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Abstract— Lazy collision checking has been proposed to
reduce the computational burden of collision checking which is
considered as a major computational bottleneck in sampling-
based motion planning. Unfortunately, in complex environments
with many obstacles, lazy collision checking can cause an exces-
sive amount of optimistic thrashing problems and significantly
degrade the performance of the planner. In this paper, we
present an adaptive lazy collision checking method to alleviate
the optimistic thrashing, thus broaden the applicability.

Our method delays collision checking on the regions pre-
dicted to be in the configuration free space, while checking
early on the other regions to reduce the optimistic thrashing.
To identify such regions, we adopt a configuration free space
approximation represented by a set of hyperspheres which can
be constructed without significant proximity computation.

To demonstrate benefits of our approach we have compared
against prior methods including RRT∗, PRM∗ and lazy PRM∗
across benchmarks with varying dimensions. Overall, our
method shows meaningful performance improvement up to
three times higher in terms of convergence speed over the tested
methods. We also discuss properties and theoretical analysis of
the proposed algorithm.

I. INTRODUCTION

Sampling-based motion planning has been well studied for
past several decades thanks to its benefits of scalability to the
high dimensional problem and probabilistic completeness.
RRT [1] and PRM [2] are examples of most dominant
algorithms in current research trends and a large number of
follow-up works have been proposed upon them for various
improvements such as higher performance for finding an
initial solution with biased sampling [3], [4] and for the
narrow passage problem [5], [6].

When it comes to the optimal motion planning, Kara-
man et al. presented RRT∗, PRM∗, and RRG [7], which
guarantee the asymptotic optimality. As a follow-works,
biased sampling techniques [8], [9], [10] have particularly
drawn much attention because of its noticeable performance
improvement and simplicity in terms of integration with
the aforementioned works. Nonetheless, additional compu-
tational overheads of adopting optimal planners are not
negligible in practice [11]. Collision checking, in particular,
has been identified as the most time-consuming part in sam-
pling based motion planning among other components [12],
[13]. To overcome the computational bottleneck, many prior
techniques have been proposed. Some of them introduced
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efficient collision detection methods with information of
local collision free space [14], [15], GPU acceleration [16],
and lazy evaluation [12].

Recently, lazy collision checking was introduced to im-
prove the optimal motion planning method [13] by delaying
the expensive collision checks. While this technique, named
lazy RRG/PRM∗ improves the performance, it has been
also identified to give rise to excessive false negative errors
of collision checking, so-called optimistic thrashing [13].
Depending on the shape of configuration free space, it could
significantly degrade the performance of optimal motion
planning.

Main contributions. To alleviate the optimistic thrashing
of the prior lazy optimal planner, we propose an adaptive lazy
collision checking named adaptive lazy PRM∗ in this work.
Adaptive lazy PRM∗ is built upon lazy PRM∗ [13], while
adaptively delaying collision checks in consideration of the
approximate configuration free space (Sec. IV). Specifically,
our method delays collision checks on the regions predicted
as collision-free, while explicitly checking on other regions
to maintain the efficiency of lazy collision checking. To
predict such regions, we propose to use configuration free
space approximate utilizing empirical collisions found in the
nature of sampling-based motion planning [17].

To demonstrate benefits of the proposed algorithm, we
have compared it against RRT∗, PRM∗ and lazy PRM∗ across
three different benchmarks. We have found that our adaptive
lazy PRM∗ shows meaningful performance improvement,
20% to 250% faster convergence rate over the prior methods
(Sec. VI). We also discuss the optimality and properties of
our method in Sec. V.

II. RELATED WORK

In this section, we review prior techniques that are directly
related to our problem.

A. Collision Checking

In sampling-based motion planning algorithms, collision
checking has been considered as one of the main bottlenecks
in terms of the computational cost [18]. Its cost depends
on the dimensionality of a given problem and varies over
the complexity of obstacles, while other components such as
sampling and nearest neighbor search are much less affected
by this kind of environmental factors.

In order to reduce the computational burden of colli-
sion checking, prior methods adopt additional geometry
operation [14] or implicitly exploit geometric information



by analyzing the distribution of samples or sampling his-
tory [17], [19]. Rather than directly reducing the overhead
of collision checking itself, Bialkowski et al. [20] proposed
an algorithm that asymptotically converges the complexity
of collision checking to a constant time amortized as the
number of iteration increases. Free space approximation
approaches to reduce the number of samples in configuration
obstacle space [17] also have been studied and given helpful
insights on additional performance improvement of collision
detection.

B. Lazy Evaluation of Collision Checking

Lazy collision checking in sampling-based motion plan-
ning [12], [13] is a technique to delay collision checking at
the expansion step, and then performs on demand only for
edges along promising solution paths. The approach provides
better performance, when the majority of given sampling
space is not necessary to explore.

Its potential drawback is known as “optimistic thrash-
ing” [13], which occurs when the planner optimistically
treats an infeasible solution path as a feasible one. It can then
give rise to frequent roll-backs of graph updates, resulting
in degrading the overall performance of the planner. Lazy
collision checking, thus, has been considered to have clear
strength and weakness depending on given problems.

Built on top of those previous works, we focus on how
optimistic thrashing affects the overall performance of opti-
mal motion planner with lazy collision checking, and suggest
a simple, yet efficient technique to improve the overall
performance by reducing optimistic thrashing dramatically
without using expensive additional proximity queries.

III. BACKGROUND

In this section, we explain basic concepts that our method
is built upon. We begin by defining motion planning prob-
lems related to ours.
Motion planning problem. Given a robot, let X⊆ Rd be
the configuration space, where x∈X is a configuration of the
robot. Let Xobs ⊂ X to denote the obstacle region, and the
free region is then defined by X f ree = X\Xobs. A collision-
free path that connects xinit to xgoal consists of a sequence
of collision-free configurations and can be expressed as a
continuous function, f : [0 : 1]→ X f ree, where f (0) = xinit
and f (1) = xgoal . The motion planning problem is then to
compute such a feasible collision-free path given initial and
goal configurations.
Optimal motion planning problem. Let g : f → R be a
cost function that associates a non-zero cost, which is the
integral of the cost function over the given path of f . To be
specific, g( f ) can be denoted by

∫ 1
0 g(∆ f (t))dt, where t ∈ [0 :

1] is a time parameter and ∆ f (t) is a measurable trajectory
passing f (t). The optimal motion planning problem is then
to compute a collision-free path, f ∗, in a similar way to that
of the motion planning problem, but its resulting path f ∗ is
computed to have the minimum cost among all the possible
paths in the given configuration space X.

Algorithm 1: PRM∗ (NAÏVE AND LAZY)

1 V ← xinit
2 E← /0
3 while Termination condition is not satis f ied do
4 xrand ← Sample()
5 if IsCollisionFree(xrand) then
6 Insert xrand to V
7 Xnear← Near(xrand)
8 foreach xnear ∈ Xnear do
9 if IsCollisionFree(xrand ,xnear) then

10 Insert (xrand ,xnear) to E

11 U pdateShortestPathTree(G)

12 return ShortestPath(G)

A. Preliminaries

We build our method upon PRM∗, which is one of optimal
sampling-based motion planning approaches proposed by
Karaman et al. [7]. Graph-based algorithms such as PRMs
and RRGs have tolerance for disconnection, thus can expect
computational benefits even in situations where structural
changes can frequently occur in G since those maintain all
of the connections to its near neighbors.

Proximity queries and notations used throughout the paper
are explained in below. For more details and generalizations,
refer to related papers [1], [7].

G = (V, E) : A graph G consists of a vertex set V and
an edge set E, which is a subset of V × V. A vertex
x ∈ V corresponds to a configuration x ∈ X f ree, and e ∈ E
represents a motion that connects xi and x j, denoted by
(xi,x j). A definition of motion follows motion capabilities
and constraints of the given problem.

Cost(x) : Given a configuration x, returns a cost from the
initial configuration xinit to x along the shortest path on G.

Nearest(x) : returns a node x′ ∈ G that is nearest to the
given configuration x, i.e., argmin

x′∈V
(‖x′− x‖).

Near(x) : returns a set of nodes that lie within a ball of
radius rnear centered at the node x, i.e., {x′ ∈ V | ‖x′− x‖ ≤
rnear}. For the optimality, threshold rnear is set to γ( log |V |

|V | )1/d ,
where d is a dimension of the problem, and γ is a user
defined constant [7]. K-nearest neighbor search also can
be an alternative for Near(·), in that case k is defined as
λ (e+ e

d ) · log(|V |). where λ is a constant greater than 1 to
guarantee almost-sure asymptotic optimality.

IsCollisionFree(x) : returns a boolean value true if a given
configuration x ∈ X f ree, f alse otherwise.

IsCollisionFree(x f rom,xto) : Likewise, returns true if there
is no collision on the given edge (x f rom,xto), f alse otherwise.
With discrete collision detection which most of motion
planners use, this function can be divided into a sequence of
point collision checking, i.e.,

∧
i∈[0,1] IsCollisionFree( f (i)),

where f (0) = x f rom and f (1) = xto as shown in Alg. 2.
A pseudocode for naı̈ve and lazy PRM∗ are shown in

Alg. 1. The difference between both algorithms can be found



Fig. 1. The left image shows an example of connecting xrand to its near
neighbor set, Xnear , which correspond to blue points within the red circle.
The dotted lines indicate edges to be checked for collision. The right image
shows a subset of X f ree denoted as a set of light blue circles, each of which
has a center at x ∈V and radius corresponding to the distance to the closest
Xobs. A sequence of bars along the edge indicates points to be checked for
collision, where ∆x is the resolution of a discrete collision checker.

in highlighted lines (9, 11). In lazy PRM∗, IsCollisionFree(·)
(:9) always returns true to delay collision checking during
the expansion, and actual checking is done along the solution
path in U pdateShortestPathTree(·) (:11). This function also
updates a DSPT(Dynamic Shortest Path Tree) [13], [21] to
maintain shortest paths from xinit to all x ∈ G. DSPT dy-
namically updates a shortest path tree with better amortized
time complexity than existing methods such as Dijkstra’s
algorithm and A∗, when edges are dynamically inserted and
removed.

B. Motivations

Lazy collision checking in conjunction with optimal
sampling-based motion planner can successfully improve the
overall performance over regular optimal planners in general
cases [13]. Nonetheless, lazy evaluation of collision checking
adopted in such lazy planners has been known to have the
problem of “optimistic thrashing” [13]. In this case, the lazy
planner optimistically treats infeasible paths without collision
checks as feasible ones which causes a rollback of graph
updates. As a result, the performance of planner can be
lowered down by the false negative error under the optimistic
assumption of lazy collision checking.

For the details, DSPT, the graph update method used
in lazy PRM∗, can be divided into two sub-routines,
Decrease(·) and Increase(·). For each configuration x ∈ V ,
Cost(x) can only decrease or remain unchanged if a vertex or
an edge is newly inserted into G. Such a procedure is handled
in Decrease(·). On the other hand, Cost(x) can only increase
if an edge e ∈ E turns out to be infeasible and then removed
from G, i.e., false negative error on the delayed collision
checking. This kind of case is covered by Increase(·).

The computation overhead of Increase(·) is more ex-
pensive than that of Decrease(·). Specifically, Increase(·)
has the complexity of O(klog(|V |)), while Decrease(·) has
O(log(|V |)), where k is defined by structural properties of the
graph G [21]. As a result, Increase(·) becomes the dominant
factor between them, by causing optimistic thrashing.
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Fig. 2. Breakdown of computation time taken for each component in
lazy PRM∗ tested on benchmark of Fig. 4. Each shortened key in legend
stands for computation time of edge collision checking (EC), vertex collision
checking (VC), nearest neighbor search (NN) and update of DSPT (SP).
Results are averaged over 10 times of trials and normalized for easy
comparison.

Fig. 2 shows relative computational overheads of differ-
ent components in lazy PRM∗ where SP stands for both
Increase(·) and decrease(·). As shown in the graph, the
cost of graph update gradually increases as the number of
iteration goes higher, and it rather seems to be comparable
against the collision detection. Accordingly, we can observe
that the major bottleneck is shifted to the graph update(SP)
from collision checking(CD) in lazy PRM∗.

The left image in Fig. 1 shows our motivation where
collision checks between xrand and its near neighbors Xnear
are illustrated. With lazy collision checking, a planner opti-
mistically accepts all of three edges depicted by dotted lines
to aggressively expand the search graph G. It is, however,
obvious that some of them will turn out to be infeasible, thus
likely to cause additional overheads, i.e., the invocation of
Increase(·),

In the right image in Fig. 1, each configuration x ∈ V is
associated with a light blue circle. The circle represents a
collision-free hypersphere with a radius of distance to the
closest Xobs. Also, a set of configurations to be checked for
IsCollisionFree(·) is denoted by blue and red rectangles,
where blue bars are collision-free, reds otherwise. We can
observe that although we know only a subset of X f ree, it
is possible to predict which configurations are likely to be
collision-free without performing collision detection since
a configuration x placed within at least one of free circles
cannot be in Xobs.

In this context, we propose an adaptive lazy collision
checking algorithm for optimal motion planning to adaptively
delay collisions only in regions that are predicted to be free.
To obtain a configuration free space information as shown
in Fig. 1, we use a configuration free space approximation
method inspired by inexact ball tree [17], as a guidance
for the proposed algorithm to efficiently avoid optimistic,
but problematic expansion of graph G in advance. In what
follows, we explain details of our algorithm and discuss its
properties.



Fig. 3. An example of adaptive collision checking. For a sample
configuration xrand , the expansion to near neighbors requires only a single
point collision checking at the red bar since other area are predicted as
a collision-free space by our free space approximation, F̃f ree. After the
expansion, the witness of xrand is inherited from the near neighbors.

IV. ALGORITHMS

In this section, we elaborate each component defined in
the proposed algorithm and underlying practical meaning.

A. Configuration Free Space Approximation

We first define our approximate configuration free space,
which is inspired by inexact ball tree [17]. The inexact
ball tree algorithm was originally proposed to approximate
configuration free space to reject samples in a wide open
area for rapid exploration of RRT. On the other hand, we
use it for our adaptive lazy evaluation, while utilizing its
scalability, efficiency and non-use of proximity computation,
e.g., computing a distance to the closest Xobs.

The approximate, free configuration space or simply ap-
proximate free space F̃ , is defined by a set of hyperspheres
in the given configuration space X. Each hypersphere, F̃xi ,
represents a local approximate free space, as shown by light
blue circles in Fig. 3. Each hypersphere is centered at a
configuration xi ∈ V with a radius rxi , and defined by the
following equations:

F̃ =
⋃

F̃xi , ∀xi ∈V,

F̃xi = {x | rxi > ‖x− xi‖}, xi ∈V.
(1)

To compute the radius of a hypersphere centered at con-
figuration xi, we utilize a set of local empirical collisions.
The set includes configurations x∈Xobs checked for an edge
collision checking adjacent to xi, where such information is
available in the nature of discrete collision checkers during
the execution.

Alg. 2 shows an example of edge collision checker,
IsCollisionFree(·). In this function Discretize(·) splits the
given edge (x f rom,xto) into a sequence of point collision
checking of k different configurations in a discrete manner,
according to the collision checking resolution. Therefore,
only a single xinter in Xobs will be captured for our ap-
proximation if such a configuration exists. Note that the
implementation detail can vary according to the collision
checking pattern, e.g., bisection method [12].

Algorithm 2: IsCollisionFree
Input: x f rom, xto, an edge (x f rom, xto)

1 k,∆x← Discretize(x f rom,xto)
2 for i = 1 to k do
3 xinter← x f rom + i ·∆x
4 if ¬IsCollisionFree(xinter) then
5 return f alse

6 return true

Lastly, we define a witness, wx ∈ Xobs associated with a
configuration x to be a configuration which is found closest
to x during the execution. The hypersphere associated with
a configuration x, F̃x therefore, has a radius of the distance
to wx, i.e., rx = ‖wx− x‖.

For both input configurations xinit and xgoal , their witness
and corresponding radius r are initialized with Null. For
a new sample configuration xrand , the initial values are
inherited from its near neighbors at the end of iteration, i.e.,
wxrand = argminxnear∈Xnear(‖wxnear − xrand‖), where Xnear is a
set of near neighbor of xrand .

In this approach, we do not perform any collision detection
dedicated to computing witnesses, while utilizing collision
information which is naturally available during the planning
process.

B. Adaptive Lazy Collision Checking

In this section, we look into how our approximate free
space F̃ can be used for improving the performance of
motion planning in conjunction with the proposed adaptive
lazy collision checking. The pseudo-code of the modified
collision checker is shown in Alg. 3. In a nutshell, the adap-
tive collision checker performs collision checking only for
configurations outside of F̃ under the optimistic assumption
that configurations inside F̃ is likely to be in X f ree. The
assumption is highly likely to be valid as the cardinality of
search graph, |V | increases.

For each configuration xinter to be checked for collision, we
test whether the configuration is in either one of hyperspheres
associated with two endpoints x f rom and xto, i.e., xinter ∈
F̃x f rom

⋃
F̃xto . If so, we assume that the configuration is in

the configuration free space, and delay its collision check.
Otherwise, we check collision explicitly to prevent optimistic
thrashing. Once we have empirical collision information, we
also update witness of x f rom and xto if possible.

In Fig. 3, we can observe how the edge collision checking
for two edges, denoted by dotted lines connected from
xrand , is processed by our adaptive lazy collision checking.
IsCollisionFree(·) denoted by the red bar is the only explicit
point collision checking in this example since the other
regions are covered by our approximate free space (light blue
circle). As a result, we can identify infeasible edges earlier
then reject to prevent optimistic thrashing.

While our method can reduce the optimistic thrashing, it is
clear that the proposed algorithm requires additional collision
checking compared to lazy PRM∗ since we consider more
collision checking in expansion step.



Algorithm 3: IsAdaptiveCollisionFree
Input: (x f rom, xto)

1 k,∆x← Discretize(x f rom,xto)
2 for i = 1 to k do
3 xinter← x f rom + i ·∆x
4 d f rom←‖xinter− x f rom‖
5 dto←‖xinter− xto‖
6 if (d f rom < Rx f rom ) ∨ (dto < Rxto ) then
7 continue

8 else if ¬IsCollisionFree(xinter) then
9 return f alse

10 return true

Algorithm 4: THE PROPOSED ALGORITHM

1 V ← xinit
2 E← /0
3 while Termination condition is not satis f ied do
4 xrand ← Sample()
5 if IsCollisionFree(xrand) then
6 Insert xrand to V
7 Xnear← Near(xrand)
8 foreach xnear ∈ Xnear do
9 if IsAdaptiveCollisionFree(xnear,xrand)

then
10 Insert (xnear,xrand) to E

11 U pdateDSPT (G)
12 while ¬ValidateSolution(G) do
13 U pdateDSPT (G)

14 return ShortestPath(G)

Nonetheless, we show the overall performance improve-
ment of our adaptive lazy collision checking with analysis
and experimental results in Sec. V and Sec. VI, respectively.

Note that when rx = ∞,∀x ∈V , our method works exactly
like lazy PRM∗, and reduces to naı̈ve PRM∗ with rx = 0.

C. Resulting Algorithm

The overall pseudo-code of the proposed algorithm
is shown in Alg. 4, where modified lines from lazy
PRM∗ [13] are highlighted (:9, 12) for easy comparison.
IsAdaptiveCollisionFree(·) replaces the prior edge collision
checking between xrand and Xnear(:9).

ValidateSolution(·)(:12) lazily evaluates feasibility of a
solution path until we found a valid solution like lazy PRM∗,
while updating our approximation F̃f ree whenever we found
empirical collision information.

U pdateDSPT (·) updates DSPT to reflect the structural
change of G such as vertex and edge insertion(:11) or edge
deletion(:13). Thus, the false negative error of lazy collision
checking causes much overhead on the validation loop(:12-
13). For details about lazy collision checking with DSPT,
refer to the lazy RRG/PRM∗ [13] and the original work on
DSPT [21].

V. EXPERIMENTS

A. Experiment setup

We experimentally show the performance of the pro-
posed algorithm in comparison with RRT∗, PRM∗ and lazy
PRM∗ [13]. For fair comparison, all of four different algo-
rithms are implemented with DSPT(Dynamic Shortest Path
Tree) for the shortest path computation by following the
existing testing protocol [13]. Also, all the tested methods are
built upon the same proximity subroutines such as collision
detector, nearest neighbor search (G-NAT in OMPL [22]) and
sampling rejection technique [8] on V-REP simulator [23].
We use r-NN for our Near(·) with a user-defined parameter
γ = 1.1.

We test three different benchmarks on the same machine
that has 3.34GHz i7 processor with 16GB of main memory.
The overall results are given in Tab. I. Tested methods pro-
duce solution paths that convergence to the optimal one as a
function of computation time, but with different convergence
rates. These benchmarks and the result tested on them are
shown in Figs. 4, 5, and 6. Note that the PRM∗ generates
a solution path with a set of samples which is generated by
a single batch at a sampling phase [24]. We, therefore, only
report the cost of final solution for PRM∗ in our experiment.

B. Experiment results

The first scene (Fig. 4) is intended to show a basic motion
planning problem where a solution cannot be directly found
across the walls. The other benchmarks (Figs. 5, 6 consist of
both wide-open area and narrow passages, where optimistic
thrashing can frequently occur due to the complex shape
of the configuration free space. It also requires heavier
computation on collision checking due to the complexity of
workspace environment.

In Fig. 4 and 5, we can observe that RRT∗ outperforms
other algorithms in terms of the cost of solution path at
the early phase. This kind of result can be achieved by
relatively faster growth pattern of a tree-based algorithm
and light-weight construction process. Across all the tested
benchmarks, however, the proposed method outperforms the
other tested algorithms regrading the convergence speed
toward the optimal solution.

As shown in the Tab. I, computation time ratio for collision
checking and graph update (CD and SP, respectively) shows
how the main computational bottleneck of each algorithm
shift in different benchmarks. Even though the lazy PRM∗

efficiently tackles down the major computational bottleneck,
i.e., collision checking(CD) and even outperforms the single-
query planner RRT∗, the cost of graph update(SP) becomes
comparable to the collision checking. This kind of phe-
nomenon can be observed, particularly in 3D L-maze scene
where the shape of solution path has a zig-zag pattern. It is
due to the false negative error of edge expansion under the
optimistic assumption which causes the more loop on the
validation phase(Line number :12-13 in Alg. 4). Moreover,
unlike the computational cost of the collision checking which
tends to be static through the execution, that of graph update



TABLE I
OVERALL STATISTICS MEASURED IN THE GIVEN TIME BUDGET FOR EACH BENCHMARK. WE REPORT THE NUMBER OF VERTICES (|V |) IN G, FINAL

SOLUTION COST (COST), COMPUTATION TIME RATIO FOR COLLISION DETECTION (CD), GRAPH UPDATE IN U pdateDSPT (·) (SP) AND SUCCESS RATE

(SUCCESS). RRT∗ AND PRM∗ HAS ZERO FOR SP SINCE THEY RUN IN A NON-LAZY MANNER. RESULTS ARE AVERAGED OVER 10 TRIALS.

Benchmark 3D L-maze 2D-Conference 6D-Sponza

Evaluation |V | Cost CD SP Success |V | Cost CD SP Success |V | Cost CD SP Success

RRT∗ 10419 4.070 99% 0% 90% 12802 2.288 99% 0% 100% 4573 7.943 99% 0% 20%

PRM∗ 3064 4.218 99% 0% 100% 1759 2.322 99% 0% 100% 2530 10.300 99% 0% 80%

Lazy PRM∗ 4507 4.012 27% 61% 100% 11881 2.283 25% 52% 100% 6533 7.838 56% 22% 100%

Proposed 16778 3.887 58% 20% 100% 16832 2.273 54% 19% 100% 12813 6.323 74% 7% 100%

0 2 4 6 8 10

4

4.2

4.4

4.6

4.8

5

Time(sec)

So
lu

tio
n 

C
os

t

 

 

RRT*
PRM*
LazyPRM*
Proposed

Fig. 4. A 3-DOF L-shaped rigid body planning in a maze-like environment. It shows a drastic decrease of SP, and the performance improvement.
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Fig. 5. A 2-DOF robot planning problem in a conference room which has both wide-open area and narrows passages. To find an optimal homotopy, the
robot should pass under the table where chair/table legs compose narrow passages, resulting in a performance degradation by false negative errors of lazy
collision checking.
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Fig. 6. A 6-DOF quadrotor planning in a Sponza scene consisting of 66K triangles. The Sponza scene is a three-story Gothic building with a several
pillars, which causes optimistic errors and relatively heavy computational overhead of collision checking. In this model, our method achieves a final cost
of 6.32, which is faster by a factor of two over the other methods. Note that the result of RRT∗ is not reported before 20s, since all of 10 trials is not able
to find even an initial solution up to that point.



Fig. 7. An illustration of biased convergence of F̃ with a heat map showing
rx, approximate minimum distance to Xobs where rx is encoded by red colors
for low values and blue for high. We can observe that rx in white rectangle
area is biased to the closest obstacle towards xgoal . Dotted enclosed elliptical
area indicates a region in which promising edges can exist in lazy manner.

asymptotically increase as the number of samples in G grows
as we have seen in Sec. III-B. It is the another reason why
the major computational bottleneck, shifts from collision
checking to the graph update depending on the shape of
given configuration space. The proposed method, however,
successfully reduces the overhead of graph update(SP) even
in the Fig. 6 benchmarks by early rejecting the problematic
expansions while preserving the efficiency of lazy collision
checking. This demonstrates the robustness of the proposed
method as well as the low computational overhead of the
proposed algorithm.

VI. ANALYSIS

In this section, we discuss asymptotic optimality and
the biased convergence of free space approximation in our
algorithm.

A. Asymptotic Optimality

Let Eproposed refer to the edges in Gproposed constructed
by the proposed method. EPRM∗ and ElazyPRM∗ are defined
similarly for naı̈ve PRM∗ and lazy PRM∗, respectively. For
the sake of the simplicity, we assume that a sequence of
random samples in different methods is identical and ignore
the cases of divergence by U pdateDSPT (·).

As depicted in Alg. 4, the proposed algorithm follows
identical steps of PRM∗ except only for the collision
checking during expansion. This makes EPRM∗ a subset of
Eproposed , since our adaptive collision checking generates
only false negative – accepting infeasible edges, while not
rejecting valid edges – which results in Eproposed has more
edges than EPRM∗ . Likewise, lazy PRM∗ accepts all of the
edges under the optimistic assumption during the expansion,
which makes our method in-between PRM∗ and lazy PRM∗

in terms of the cardinality of E. Therefore, we have a
relationship of EPRM∗ ⊂ Eproposed ⊂ ElazyPRM∗ . Consequently,
the optimality and completeness of PRM∗ and lazy PRM∗

are applied to the proposed algorithm [13].

Fig. 8. An illustration of Eq. 2 corresponding to the elliptical area in Fig. 7.
It denotes a restricted domain for edge expansions from x to a subset of
near neighbors caused by lazy collision checking.

B. Biased convergence of F̃

Interestingly, the behavior of the proposed algorithm is not
only governed by configuration free space approximation F̃ ,
but also affects the convergence of F̃ .

When we update the approximate free space in the non-
lazy collision checking with uniform sampling, F̃x is updated
and trimmed by witnesses in all possible directions. On the
other hand, when F̃x is updated with lazy collision checking,
we consider edges from an arbitrary configuration x to those
nearby nodes, only when those edges are expected to be a
part of the solution path.

To be specific, for a configuration x, only edges from x to
xnear ∈X ′near satisfying Eq. 2 can reduce Cost(xgoal); no other
edges from x are never considered for the graph expansion.

X ′near = {xnear ∈ Xnear |Cost(x)+‖x,xnear‖
+ ĝ(xnear)<Cost(xgoal)},

(2)

where Cost(x) and ĝ(xnear) stand for a cost-to-come from
xinit to x and an admissible cost-to-go from xnear to xgoal ,
respectively. Fig. 8 shows Eq. 2 in an illustrative way. The
proposed algorithm uses DSPT(Dynamic Shortest Path Tree)
structure for finding the shortest path in search graph G
at the end of each iteration as shown in line 12-13 in
Alg. 4. For this reason, all of the edges newly added to
the solution path satisfy Eq. 2 implicitly in the nature of the
proposed algorithm. Cost(x) for all x ∈ V are also updated
during the DSPT update which is necessary for shortest path
computation. For the details, refer to the original paper [21].

Furthermore, collision checking in Alg. 2 always returns
an empirical collision close to x f rom, which leads to a biased
result of F̃ . Fig. 7 shows such an example where heat map
shows distribution of rx, the distance from each configuration
to the closest Xobs approximated by the proposed method.

These properties seem to harm the completeness of F̃ .
However, it results in narrowing down the domain of empiri-
cal collision set for F̃x. For a configuration x, probabilistically
more edges towards promising directions will be checked
during execution, and thus biased F̃x can provide better
understanding for a configuration x than the non-lazy case.
Consequently, it can be beneficial for adaptive collision
checking since biased F̃x reflects the majority of outgoing
edges from a configuration x.



VII. CONCLUSION

Our motivation for this work began with the questions,
how false negative errors of lazy collision checking affects
the performance of sampling-based motion planner, and how
we can alleviate it. To this end, we have proposed an adaptive
lazy collision checking with configuration free space ap-
proximation. The approximate free space information guides
which areas should be checked early to avoid the optimistic
thrashing while preserving the efficiency of lazy collision
checking.

Our method provides meaningful results over the prior
methods across all the tested benchmarks with varying
dimensions. We also have shown properties of the config-
uration free space approximation in conjunction with lazy
collision checking.

As a future work, it is worth studying the representation
of configuration free space for better accuracy and flexibility.
Furthermore, as shown in Fig. 2, a possible research direction
could be to improve a graph manipulation and nearest
neighbor search for higher scalability with respect to the
nature of optimal sampling-based planning.

REFERENCES

[1] Steven M LaValle, “Rapidly-exploring random trees a new tool for
path planning”, Tech. Rep. 98-11, Iowa State University, 1998.

[2] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars,
“Probabilistic roadmaps for path planning in high-dimensional config-
uration spaces”, IEEE Transactions on Robotics and Automation, vol.
12, no. 4, pp. 566–580, 1996.

[3] J. Kuffner and S.M. LaValle, “RRT-connect: An efficient approach
to single-query path planning”, in IEEE Int’l. Conf. on Robotics and
Automation, 2000, pp. 995–1001.

[4] Shawna Thomas, Marco Morales, Xinyu Tang, and Nancy M Amato,
“Biasing samplers to improve motion planning performance”, in IEEE
Int’l. Conf. on Robotics and Automation. IEEE, 2007, pp. 1625–1630.

[5] L. Zhang and D. Manocha, “An efficient retraction-based RRT
planner”, in IEEE Int’l. Conf. on Robotics and Automation, 2008,
pp. 3743–3750.

[6] Junghwan Lee, OSung Kwon, Liangjun Zhang, and Sung-eui Yoon,
“SR-RRT: Selective retraction-based RRT planner”, in IEEE Int’l.
Conf. on Robotics and Automation, 2012, pp. 2543–2550.

[7] Sertac Karaman and Emilio Frazzoli, “Sampling-based algorithms for
optimal motion planning”, Int’l. Journal of Robotics Research, vol.
30, no. 7, pp. 846–894, 2011.

[8] B. Akgun and M. Stilman, “Sampling heuristics for optimal motion
planning in high dimensions”, in IEEE/RSJ Int’l. Conf. on Intelligent
Robots and Systems, 2011, pp. 2640–2645.

[9] Donghyuk Kim, Junghwan Lee, and Sung-eui Yoon, “Cloud RRT∗:
Sampling cloud based RRT∗”, in IEEE Int’l. Conf. on Robotics and
Automation, 2014, pp. 2519–2526.

[10] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot,
“Informed RRT∗: Optimal sampling-based path planning focused via
direct sampling of an admissible ellipsoidal heuristic”, in IEEE/RSJ
Int’l. Conf. on Intelligent Robots and Systems. IEEE, 2014, pp. 2997–
3004.

[11] Jingru Luo and Kris Hauser, “An empirical study of optimal motion
planning”, in IEEE/RSJ Int’l. Conf. on Intelligent Robots and Systems,
2014, pp. 1761–1768.

[12] R. Bohlin and E.E. Kavraki, “Path planning using lazy prm”, in IEEE
Int’l. Conf. on Robotics and Automation, 2000, vol. 1, pp. 521–528
vol.1.

[13] Kris Hauser, “Lazy collision checking in asymptotically optimal
motion planning”, in IEEE Int’l. Conf. on Robotics and Automation,
2015.

[14] M. Foskey, M. Garber, M. Lin, and D. Manocha, “A voronoi-based
hybrid motion planner”, in IEEE/RSJ Int’l. Conf. on Intelligent Robots
and Systems, 2001, vol. 1, pp. 55–60.

[15] Joshua Bialkowski, Michael Otte, and Emilio Frazzoli, “Free-
configuration biased sampling for motion planning”, in IEEE/RSJ
Int’l. Conf. on Intelligent Robots and Systems. IEEE, 2013, pp. 1272–
1279.

[16] Jia Pan, Christian Lauterbach, and Dinesh Manocha, “g-planner: Real-
time motion planning and global navigation using gpus”, in AAAI
Conference on Artificial Intelligence, 2010.

[17] A. Shkolnik and R. Tedrake, “Sample-based planning with volumes
in configuration space”, arXiv preprint arXiv:1109.3145, 2011.

[18] S. M. LaValle, Planning Algorithms, Cambridge University Press,
2006.

[19] A. Perez, S. Karaman, A. Shkolnik, E. Frazzoli, S. Teller, and M. R.
Walter, “Asymptotically-optimal path planning for manipulation using
incremental sampling-based algorithms”, in IEEE/RSJ Int’l. Conf. on
Intelligent Robots and Systems, 2011, pp. 4307–4313.

[20] Joshua Bialkowski, Sertac Karaman, Michael Otte, and Emilio Fraz-
zoli, “Efficient collision checking in sampling-based motion planning”,
in Int’l. Workshop on the Algorithmic Foundations of Robotics, pp.
365–380. 2013.

[21] Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni,
“Fully dynamic algorithms for maintaining shortest paths trees”,
Journal of Algorithms, vol. 34, no. 2, pp. 251–281, 2000.
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