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Abstract— We present a method enabling a robot to automat-
ically arrange objects using task and motion planning. Given
an input scene consisting of cluttered objects, our method first
constructs a target layout of objects as a guidance to the robot
for arranging them. For constructing the layout, we use positive
examples and pre-extract hierarchical, spatial and pairwise
relationships between objects, to understand the user preference
on arranging objects. Our method then enables a robot to
arrange input objects to reach their target configurations using
any task and motion planner. To efficiently arrange the objects,
we also propose a priority layer that decides an order of
arranging objects to take a small amount of actions. This is
achieved by utilizing a dependency graph between objects. We
test our method in three different scenes with varying numbers
of objects, and apply our method to two well-known task and
motion planners with the virtual PR2 robot. We demonstrate
that we can use the robot to automatically arrange objects, and
show that our priority layer reduces the total running time up
to 2.15 times in those tested planners.

I. INTRODUCTION

Robots and autonomous devices are becoming more
widely available, and we are using them to a variety of tasks
ranging from simple tasks, e.g., washing cars, to dangerous
tasks, e.g., handling radioactive materials. Currently, a lot
of manufacturing companies use industrial robots to reduce
cost and boost productivity. However, domestic robots have
not gained much attraction due to their incompetence in
performing household chores. Recently, with the rise of
artificial intelligence and advances of humanoid robots, we
are getting more interest in designing and utilizing domestic
robots. Intelligent domestic robots can interact with humans
and offload a significant amount of works from humans.

One way that a domestic robot can be intelligent is by
finding a series of feasible actions for a given task and
performing those actions on its own. Many task and motion
planning methods have been proposed to efficiently plan
and perform various applications such as cooking food,
facilitating industrial logistics, harvesting fruits, and so on.
In this paper, we focus on arranging cluttered objects neatly
in a room.

To perform a task such as arranging objects, robots require
a specific goal or a guided plan from a user. Unfortunately,
it is very inconvenient or even infeasible for a user to
give specific sequences of actions to a robot. In addition,
a complex case consisting of a large number of objects
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(a) Initial cluttered state (b) Picking up the tape dispenser

(c) Carrying the book (d) Arranged state

Fig. 1. These figures show the process of arranging objects from an initial
cluttered state (a) to an arranged state (d) by using a virtual PR2 robot and
taking various actions including (b) and (c). (b) shows the robot picking
up the tape dispenser, and (c) shows the robot carrying the book.

becomes the hard-to-solve problem. To address these issues,
we focus on an approach that enables a robot to arrange the
cluttered objects in an efficient way through automatically
generating a goal from a non-specific command.

Since the problem that we target is extremely wide, we
assume in this paper that a robot can recognize and grasp
objects, so we can assign a grasping pose for each object.
This is a reasonable assumption, because many works have
been developed on object recognition [1], [2] and object
grasping [3], [4] using deep learning. We therefore focus
on making goal states, task sequences, and robot trajectories
to arrange objects automatically.

Main contributions. In this paper, we present an inte-
grated approach for automated planning of a robot for object
arrangements. Our method consists of two main parts: gener-
ating a target layout for object arrangements, and efficiently
planning a series of feasible actions to reach the target layout
(Fig. 1). To find a target configuration of each object, we first
optimize configurations of objects using various relationship
extracted from positive examples. This process is carried out
by using very fast simulated re-annealing [5] (Sec. IV). We
can then use any task and motion planning to reach the
target layout (Sec. V-A). We also propose a priority layer to
efficiently perform complex object arrangements by utilizing
the relationships of objects from the layout computation. The
priority layer represents dependencies of objects as a directed
graph, and determines an efficient order of arranging objects
by topological sort (Sec. V-B).

To analyze our method, we test three rooms with different



characteristics in terms of arranging the objects. We also
apply our layout computation method to two well-known task
and motion planners, and show that our method automatically
arranges objects based on the computed layouts. In addition,
we also show that our priority layer robustly improves the
overall running performance up to 2.15 times in the two
tested task and motion planners (Sec. VI).

II. RELATED WORK

In this section, we discuss prior work on object arrange-
ments, followed by integrated task and motion planning.

A. Object Arrangements

Jiang et al. [6] suggested a method for a robot to place
objects in stable and semantically preferred area using a
supervised learning with point cloud data. On their subse-
quent work, Jiang et al. [7] considered arranging objects by
learning the relationship between human poses and objects so
that objects are easily accessible by humans. Abdo et al. [8]
proposed a method to tidy up objects on shelves and in boxes
by applying user preferences. These user preferences were
determined by a collaborative filtering technique based on
crowd-sourced and mined data.

Our approach is inspired by the work of automatic furni-
ture arrangements [9], which targets to synthesize a variety
of indoor scenes by using the relationships of furniture for
digital content creation. While this work is not designed for
robotic applications, we adopt it for our problem as a goal
generation and extend it by using our very fast simulated
re-annealing. Furthermore, we utilize various information
extracted during layout computation for our priority layer,
enabling effective and efficient integration between layout
computation and TMP.

B. Task and Motion Planning

Hierarchical Planning in the Now (HPN) [10] reduces
search depth and planning time by dividing the plan and
execution in a large state space. Some works proposed a
method using an interface layer that connects a symbolic
task planner to a geometric motion planner. The work of
De Silva et al. [11] used shared literals to combine two
planners and control backtracking based on hierarchical task
networks [12]. Srivastava et al. [13] used off-the-shelf task
planners, and if an obstacle gets in the way, they simply
create an additional task that removes the obstacle. Although
these planners can arrange multiple movable objects accu-
rately, they do not seek to minimize the number of actions
to arrange them.

To efficiently solve this problem, Stilman et al. [14] used
exhaustive backtracking search for monotone problems. Kro-
ntiris et al. [15] designed a constraint graph using minimum
constraint removal paths (MCR) [16] and then got the order
of moving objects by topological sort. They also proposed
a higher-level incremental search algorithm to solve non-
monotone problems. Our work handles a more challenging
problem that requires pick-and-place actions for moving on
another furniture or stacking objects. Since obtaining MCR

A BCAB C
L1 L2 L3 L4

Goal

L1 L2 L3 L4

Current

(a) Locationally intertwined case

A

B

C

A

B

C

Goal

L1 L2 L3 L4 L1 L2 L3 L4

Current

(b) Hierarchically intertwined case

Fig. 2. These are two examples that can occur in the object arrangement.
(a) shows that target locations of objects are intertwined. For example, L2
is the current location of the object A, and it is also the goal location of
the object C. (b) shows that the parent-child relationships of objects are
intertwined. For example, the object C is the parent of object B in the
current state, while the object B is the parent of object C in the goal state.

of all objects for pick-and-place actions is time-consuming,
the planning time to execute is too long. To progress planning
and execution simultaneously, we greedily search the target
object using the information of layout computation.

III. OVERVIEW

In this section, we give motivations and overview of our
work.

A. Motivations

Task and Motion Planning (TMP) computes a sequence of
actions to perform a given task or goal, while considering
various constraints (e.g., avoiding collisions). Related to our
problem of object arrangements, recent robotic applications
use a TMP to automatically perform a task such as tidying
up a table [17] or industrial logistics [18]. Unfortunately,
these approaches assume that target configurations of objects
for the task are already given or manually specified, and
automatically computing such targets for TMP has been
studied relatively less compared to TMP itself.

Our object arrangement tasks have many and diverse
objects located in scenes. Furthermore, their states of objects
can be intertwined when we consider current and goal states,
as shown in Fig. 2. For handling our problem efficiently, it
is desirable to find an optimal order of object arrangements,
e.g., moving objects in the order of B→ A→C in Fig. 2(a).
Fig. 2(b) also shows an example case containing hierarchi-
cally stacked objects, where the object A should be placed
at the bottom first in the goal states.

B. Overview of Our Approach

To automatically arrange objects, we propose a method
that integrates layout computation and TMP. Fig. 3 shows
an overview of our approach. Our approach is divided into
two stages.

Our layout computation first constructs a target layout
of objects contained in the environment. As its learning
phase, our work extracts various object relationships, such as
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Fig. 3. This shows an overview of our approach. Our method first constructs an arranged scene as the target layout (b) from the initial state (a) using
various relationships extracted from user’s positive examples. At runtime, we use our priority layer, considering the computed layout and various relationship
between objects defined in a dependency graph, for a robot to arrange objects by using a task and motion planner (TMP). The priority layer communicate
with TMP (c). We repeat to use TMP with our priority layer until all the objects are arrived at their goal state (d).

spatial, hierarchical and pairwise relationship, from positive
examples to a given environment. By using the extracted
relationship and considering the reachability of a robot
to objects, our work optimizes configurations of objects
into arranged configurations. We also propose to use very
fast simulated re-annealing for efficiently optimizing those
configurations.

Second, using the target layout, our work plans feasible
actions of the robot to arrange objects using an existing
TMP. We propose a priority layer that utilizes extracted
relationships between objects, and enables efficient object
arrangement, resulting in effective integration between layout
computation and TMP. While the layout computation con-
structs the target configurations of objects, the priority layer
decides an order of arranging objects by avoiding obstacles
and redundant actions, to take the minimum number of
actions. For this purpose, we define prerequisites of placing
objects and represent them in a dependency graph. Our
priority layer determines an order of placing objects using
topological sorting with greedy search on the dependency
graph.

According to the decision of the priority layer, TMP
plans the movement of a robot to arrive at the goal state.
After executing the plan, the priority layer updates the state
received from TMP. Our work repeats this process until all
objects are arranged.

IV. AUTOMATIC LAYOUT COMPUTATION

In this section, we explain how to compute arranged con-
figurations of objects from the input cluttered environment,
followed by feeding them to TMP for enabling a robot to
arrange them.

Our work optimizes layout configurations of objects based
on user’s positive examples. Our work assumes that users
provide such positive examples in the 3D scene that consists
of 3D objects. Note that advances of 3D modeling tools, e.g.,
3ds Max, and widely available 3D objects, e.g., Google 3D
warehouse, it is relatively easy even for novice to construct
such 3D scenes reflecting his or her rooms. As a result,
we choose to utilize such positive examples for considering
user’s preference.

A. Extraction

The extraction process enables us to obtain various rela-
tionships that serve as the basis for optimizing configurations
of objects. Specifically, our work extracts hierarchical and
pairwise relationships from positive examples. The hierarchi-
cal relationship is defined as a parent-child relation of two
objects, where a parent object can support a child object;
e.g., the parent of a keyboard can be a desk. We also derive
a relative spatial transformation from the parent to the child.
This relative spatial transformation can be well represented
by 2D translation and 1D angle of an object given its parent.

Fig. 4(a) represents an example of hierarchical relationship
between a desk and a notebook located on the desk. For
computing a relative configuration of an object o, given its
parent object p, we first identify the closest surface, so

1, of the
object o from its parent object p. We then also find another
surface, sp

1 , of the parent object p, from so
1 of the object o.

Once we compute such a pair of surfaces, we then compute
the relative distance d1 and angle θ1; examples of them are
also shown in Fig. 4(a). In addition, we pick another side, sp

2 ,
between two or multiple sides connected to the surface so

1 as
the closest side to the object o. We then also compute another
relative distance, d2, between sp

2 and the object o. Fig. 4(b)
shows an arrangement result computed by considering these
relative translation and angle.

Our work also extracts similar information between var-
ious pairs of objects, as the pairwise relationship, from
positive examples. When these additional information are
extracted and considered during our optimization process,
we can get more appropriate results for our arrangement
application (Fig. 4(b)). One may think that we also need
to encode the relative spatial location along the height, but
we found that it is unnecessary for our applications, since
objects are stacked together for our application and thus their
height can be implicitly encoded.

B. Layout Optimization

We use an optimization process to compute target, ar-
ranged configurations of objects using information obtained
from the extraction process. Our optimization is based
on very fast simulated re-annealing (VFSR) [5], which is
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Fig. 4. (a) We extract two distances (d1,d2) and one angle θ1 between
the parent p and its child o objects. (b) shows a result of our arragement
computed by considering these relative 2D translations and 1D angle.

analogous to physical annealing process, to compute layout
candidates that have low cost values given our cost function
(Eq. 3, 4). Intuitively speaking, the cost function simply
measures the distance between the current configuration of an
object and its reference configuration extracted from positive
examples, indicating a cluttered level of the object from the
positive examples.

VFSR is one of the powerful simulated annealing ap-
proaches, which has been known to compute the global
minimum, under the assumption that its cooling stage is slow
enough. Among many alternatives, we choose VFSR because
it has been shown to be exponentially faster convergence
than others (e.g., fast simulated annealing [19] and genetic
algorithms [20]).

To effectively compute configurations of arranged objects,
we design our problem of object arrangement to be suitable
for the VFSR algorithm. We regard a cluttered level of a
scene as temperature, i.e., a cost of the scene; we give a
higher cost to the scene as more objects are cluttered away
from positive examples. Our goal is then to find a state
for each object that minimizes the temperature. Our state,
X , includes 2D positions and angle, i.e., [x,y,θ ], for our
problem. At an iteration i of our optimization process, the
temperature associated with each state parameter is given by:

T X j

i = T X j

0 eci1/D
, (1)

where T0 is an initial temperature, which is set as an initial
cluttered level by our cost function, and X j is the j-th
element of the state space X , D is the dimension of the state
space X , which is 3 in our case. The control parameter c is
the Boltzmann’s constant in the above equation.

VFSR has advantages of processing different temperatures
for each state space and specifying a finite range. These
advantages can be effectively utilized for our arrangement
by moving and rotating objects within their parent objects,
to efficiently reach to the optimized configurations. To move
and rotate an object, we generate a random variable, δX j,
using the distribution of VFSR:

δX j = sgn(uX j − 1
2
)T X j

[(1+
1

T X j )
|2uX j−1|−1];

uX j ∈U [0,1],
(2)

where uX j
is from the uniform distribution. The calculated

δX j belongs to [−1,1], and the amount of change in the j-th
state space, ∆X j, is then constrained.

Specifically, the configuration of an object is updated by
translation, (xi,yi)→ (xi +∆x,yi +∆y) or rotation, (θ i)→
(θi +∆θ), where the range of ∆x and ∆y are constrained by
the size of the parent object, and the range of ∆θ belongs to
[−π,+π].

As a minor optimization for hierarchical positioning of
objects, we can reduce the search space of VFSR within inde-
pendent sets of objects, where each set contains objects that
have the parent-child relationship. This is possible because
placing objects are constrained within their parent objects de-
termined from the hierarchical relationship. Specifically, for
each set, we assign a different, local temperature depending
on the number and cluttered level of objects in the set, instead
of using a global temperature for all the objects in a scene.
As a result, we can improve the convergence by reducing
iterations on nearly arranged sets and thus allocating more
time on significantly cluttered sets. We found that this simple
optimization improves 1.44 times on average on our layout
computation (Sec.VI-A).

Our cost minimization process based on VFSR works as
follows: Most objects in our applications are placed on top of
other objects, e.g., desk, bookshelf and notebook. Therefore,
we first check whether an object, o, in our target layout has
its parent object, p, and if so, we place the object o on top
of its parent object p by utilizing the extracted hierarchical
relationship. Given that hierarchical positioning, we continue
to move or rotate the object o until the cost evaluated from
our cost function becomes small enough.

Cost calculation. In the extraction process, we extracted
various information, d1, d2, θ1 with specific surfaces, and
pairwise information. The overall cost function is defined to
be the sum of the following cost terms. A hierarchical cost,
Ch(o), for an object o given its parent object p is defined as:

Ch(o) = min
ψi∈Ψ

(wd1
h |d

ψi
1 −dψi

1 |+wd2
h |d

ψi
2 −dψi

2 |

+wθ1
h |θ

ψi
1 −θ

ψi
1 |) ,

(3)

where w ·
h is a weight for each element term, ψi represents

each positive example from its positive example set, Ψ;
e.g., d1 is computed in the current configuration, while dψi

1
indicates d1 value extracted from the i-th positive example
from Ψ. A pairwise cost, Cpair, for a pair of two interacting
objects, (opair1 ,opair2), is defined as:

Cpair((opair1 ,opair2)) = min
ψi∈Ψ

(wd
pair|d−dψi |+wθ

pair|θ −θ ψi |) ,

(4)

where d and θ are the L2 distance and angle between two
interacting objects (opair1 ,opair2), respectively; dψi and θ ψi

are extracted from the i-th positive example from Ψ.
Our work also considers a constraint of reachability to

reflect physical limitations of a robot (e.g., gripper size
and arm length). To consider reachability, we utilize an
unreachable region as a space where a robot cannot pick



and place objects, and determine the region by considering
the kinematics of robot and the configurations of objects.
We then disallow configurations of objects that are in the
unreachable area, while they reduce the overall cost.

V. TASK AND MOTION PLANNING

In this section, we explain how to use the computed layout
on TMP using the priority layer.

A. Representing the Layout as Symbolic Forms

Our work uses existing TMP planners such as HPN [10]
and the combined TMP approach [13]. Since these planners
are domain-dependent, they define states of a domain in a
symbolic form through PDDL (Planning Domain Definition
Language) [21] format. PDDL consists of a domain and a
problem. A domain describes predicates and a set of robot
actions, and a problem sets the initial state and the goal state
specifications for objects.

To utilize those planners, we also define a domain as well
as a problem for our task of arranging objects through PDDL.
Our object arrangement can be solved by three basic actions:
pick, place, and move; a robot can pick up or place an object
and move it to the goal position of the object. We define the
domain using these three actions according to each planner.
In addition, we define a problem based on the domain for a
robot to arrange objects.

The problem is constructed simply by expressing the
automatically arranged layout computed by VFSR as the goal
state. Fortunately, the arranged layout already contains all the
information for making a symbol to define the goal state. For
an example, we define a symbol At(o, p, Tp

o ), to denote the
position of an object o relatively to its parent p through a
4 by 4 transformation T. This symbol is used to specify the
object o both in initial and goal states.

B. Priority layer

We now explain how to arrange objects efficiently using
our priority layer. Our work is based on the approach of
Krontiris et al. [15] that uses the minimum constraint removal
paths (MCR) [16] for constructing a directed graph. On the
other hand, our approach predicts the possible constraints us-
ing the information of layout computation and then performs
a task using TMP according to the predicted result. This is
a greedy way to overcome the drawbacks of many planning
time to execute until obtaining paths for all objects.

Our priority layer sets prerequisites for moving objects in
our application. A prerequisite of an object o to reach its goal
is that its obstacle oobs located in a trajectory from o to its
goal must be moved to another location or its target location
before moving the object o. In the example of Fig. 5(a), an
object C is located at the target location of the object A. To
avoid any unnecessary actions, we must move the object C
to another location before moving the object A.

We encode these prerequisites between objects as a depen-
dency graph and use our priority layer to determine an order
of arranging objects through topological sort on the graph.

Making a dependency graph. Our priority layer rep-
resents the relationship of objects as a dependency graph
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Fig. 5. (a) is an example that has no circular dependency. (b) shows the
dependency graph of the (a).

Gt = (Vt ,Et), where t is a time step at which TMP is
executed, Vt is a set of nodes, which is composed of objects,
i.e., Vt = {o1,o2, · · · ,on} with the current state Qt and the
goal state QΓ. Et is a set of directed edges, each of which
indicates a prerequisite between two objects. Specifically, a
directed edge e indicates geometric constraints (e.g., having
collisions) or hierarchical constraints (e.g., having the parent-
child relationship) between two objects. Let us first explain
on creating edges for geometric constraints. Suppose that we
attempt to move an object o to its target configuration. In this
case, if we have a collision against another object oobs, we
have a dependency between two objects and thus create an
edge, (oobs→ o), indicating intuitively that we have to move
oobs to another location first before moving o to its target
configuration. In the example of Fig. 5(a), moving the object
A to its target configuration, L2, causes a collision with the
object, C, which is located on L2 at the current state. As a
result, we have to move C to another location, preferably, its
target configuration, L3, and we thus create an edge (C→A),
which is shown in Fig. 5(b).

We now explain how to create edges for the hierarchical
relationship between two objects: a parent, p, and its child,
c. Fortunately, this hierarchical relationship can be easily
obtained from our layout computation. However, a special
care is given for considering the relationship between ones
in the current state and goal state. In the example of Fig. 5(a),
the object D is on the object B in the current state, and the
object B is on the object A in the goal state. In the current
state, the child object D must be moved first before moving
its parent object B, and we thus create an edge (D→ B). On
the other hand, for the goal state, the parent object A must
reach the target configuration first before its child object B,
and we thus create an edge (A→ B) (Fig. 5(b)).

Topological sort. We use topological sort in order to
effectively compute an order of arranging objects from the
constructed dependency graph, Gt . Since topological sort
lists nodes by considering directions of the directed edges,
we can construct a sequence of arranging objects while
considering dependency and thus avoiding future collisions.
Overall, we perform the following steps until the robot
reaches the final goal state computed by our layout com-
putation.

In our method, we collect nodes that do not have any
incoming edges in the dependency graph Gt into a list Lt ,
which is in line 3 of Alg. 1. Note that those nodes without
having any incoming edges mean that they do not have any
dependency and thus can be processed earlier than others.
Among those possible candidates in the list, we select a
node, i.e., an object, which has a minimum traveling distance



Algorithm 1: Topological sort for arranging objects.

Input: Rloc, Q0, QΓ, robot’s location, current and goal
states.

1 G0←MakeGraph(Q0,QΓ)
2 while Qt 6= QΓ do
3 Lt ← GetNoIncomingEdge(Gt)
4 if Lt is empty then
5 ointer←CutCircularDependency(Gt)
6 otar← FindIntermediateLocation(ointer)
7 else
8 otar← FindLowcostNode(Lt ,Rloc

t )

9 Qt+1,Rloc
t+1← DeliverT MP(otar)

10 Gt+1←U pdateGraph(Qt+1)

for a robot to reach the object and move it to its target
configuration.

For each chosen node, otar, we need to know its target
position for computing its estimated traveling distance and
for passing it to TMP. Fortunately, this information is readily
available thanks to our layout computation. We then create a
problem for the selected target node otar and send it to TMP
for making the object reach its target configuration (line 9
of Alg. 1).

After executing the task for placing otar at its target
configuration, we accept the modified state Qt+1 and then
update the graph Gt+1 based on the modified state Qt+1 (line
10 of Alg. 1). Since moving an object makes only local
changes to its node and its dependent nodes in the graph,
updating the dependency graph takes only a minor portion,
less than 1%, of the total running time.

Handling circular dependency. There is a special case
requiring additional treatment for effective arrangement: the
case involving the circular dependency. In this case with
two or multiple objects having the circular dependency, e.g.,
swapping two objects, we must find an intermediate target
position for an object before we finally move it to the final
target position. We can easily identify such cases based on
our dependency graph, even if many objects are intertwined
deeply, e.g., a cluttered desk with many stacked objects in
the tested bedroom scene.

It is important not only to solve a circular dependency,
but also not to make it. To avoid making such circular
dependency, the intermediate position of an object o should
not be located at the target configuration of objects that are
dependent on the object o. Considering these conditions, we
randomly select the intermediate position without collision.

To address a circular dependency, we find a sequence of
actions to remove the circular dependency. We can remove
such edges involved in the circular dependency by moving
objects, ointer (line 6 of Alg. 1), to intermediate locations.
Fig 6(a) shows a case involving the circular dependency.
We, however, do not remove edges created by hierarchical
relationships in the goal state, since we do not recompute
our arranged layout that is already computed by considering
user preference. We show such edges in the red arrows in
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D B
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(a) Circular dependency case

C
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Fig. 6. (a) is an example that has circular dependency. (b) shows the
dependency graph of (a). Arrows represent edges, while red arrows indicates
unremovable edges due to the final, fixed layout.

(a) Bed room (b) Kitchen

(c) Living room

Fig. 7. These figures show target, arranged layouts computed by our method
for three different types of rooms.

Fig. 6(b).

VI. EXPERIMENTS AND RESULTS

We test our method and others on a machine that has
3.60GHz Intel i7-3820 CPU and 16GB RAM. We use the
PR2 robot for arranging objects within OpenRAVE simulator
and Trajopt [22], which is an optimization-based planner,
for manipulating the robot. We use two well-known task
planners to show a wide applicability of our method.

To test the feasibility of our method for object arrange-
ments, we use various 3D models obtained from Google
3D warehouse and Fisher et al. [23]. Overall, we use 55
different 3D models to place furniture and objects in three
different rooms: kitchen, living room, and bedroom (Fig. 7).
We construct these three test scenes that have different
characteristics in terms of arranging the objects.

We design the kitchen and living room scenes to analyze
effects on the hierarchically stacked objects. The living room
scene has deep hierarchical relationships, e.g., four books
are stacked on the table, while the kitchen scene has no
hierarchical relationships between objects. The bed room
scenes are used for comparing the performance depending
on the number of objects.

A. Results of layout computation

We compute an object layout based on information ex-
tracted from positive examples. Our work uses five positive
examples for each scene, while having more objects and their
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Fig. 8. This figure shows the running time taken for layout computation, as
a function of the number of objects. Our VFSR approach shows 1.44 times
on average and up to 1.52 times performance improvement on average over
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diverse positions in examples can bring better results; the
used positive examples for the bedroom scene are shown
in the accompanying video. The habits of arranging objects
vary across different persons, and a user can reflect his or
her preference based on those positive examples (Sec. IV-A).

To show benefits of our VFSR used for layout compu-
tation, we also implement and test a standard simulated
annealing (SA) [24] on the bedroom scene. We measure how
long these two different layout computation methods take to
compute an object arrangement layout as a function of the
number of objects. Intuitively, the relationships of objects
become complicated further, as the number of objects in-
creases. Therefore, finding optimized configurations in such
complex situations requires many random rotation as well
as translation of objects for the tested optimized methods.
As a result, layout computation takes more running time as
the number of objects increases (Fig. 8). Nonetheless, our
VFSR shows 1.38 times on average (1.52 up to) performance
improvement over SA in the tested bedroom scene.

B. Analysis of the priority layer
Once we compute target layouts of objects, we can use

any existing task and motion planner to maneuver a robot
to arrange objects to their target layouts. To show a wide
applicability of our approach, we test two well-known TMP
planners: Hierarchical Planning in the Now (HPN) [10]
and Combined Task and Motion Planner via interface layer
(CTMP) [13]. Our priority layer helps these planners do work
efficiently by selecting the target object in consideration of
prerequisites in our application.

To verify the efficiency of our priority layer, we measure
the running time for arranging objects by the PR2 robot
coupled with these planners. We also evaluate the number of
actions made by PR2 to reach the goal and the total distance
traveled by PR2.

Fig. 9 shows the running time of the tested planners in
the bedroom scene that has varying numbers of objects. The
running time includes the processing time on planning, exe-
cution time of actions, and computation time on the priority
layer. As the number of objects increases, the running time
of HPN and CTMP increases. Given this general trend, we
are able to observe meaningful performance improvement,
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Fig. 9. This figure shows the overall running time when we use different
task and motion planners for our method w/ and w/o using our priority
layer. We can see that the running time of two existing TMP is reduced
robustly by applying our priority layer (PL).

1.64 times on average and up to 2.15 times, by using our
priority layer in both tested HPN and CTMP task planners.
This improvement is achieved mainly by avoiding inefficient
and redundant actions thanks to our priority layer, and thus
reducing the number of actions. Note that our computed
target layouts enable a robot to arrange objects, and our pri-
ority layer accelerates its planning time by utilizing various
information available from our computed layouts through the
dependency graph.

Table I shows various statistics, the number of actions,
traveled distance, and runtime breakdown of running differ-
ent TMP methods with and without our priority layer. Across
all the tested scenes, using the priority layer shows up to 2.15
times and 1.82 times performance improvement in terms of
the overall running time compared to not using the priority
layer, measured with two tested planners. Let us look at
results of living room and kitchen scenes in Table I. Note that
these two scenes have the same number of objects. However,
it takes 1.5 times more actions for the living room than that
of the kitchen, when using existing planners without using
our priority layer. This is mainly because the living room
has some objects that need to be stacked for arrangements
(e.g., four books stacked), while we do not have such objects
in the kitchen scene. When this hierarchical relationship is
not carefully handled, it can cause unnecessary actions in
the process of moving and stacking objects. On the other
hand, when these planners are used together with our priority,
they can effectively reduce the number of actions, resulting
in higher performance, thanks to considering dependency
between objects encoded in our dependency graph.

Limitations. Our layout computation based on VFSR is
faster than the standard simulated annealing, but it is not real-
time (e.g., less than 1 sec. or so). While a faster approach is
desirable, users can reduce the hassle of manually giving
goal states for objects in scenes even with the current
method. When our method encounters new objects that are
not included in the positive examples, however, users need
to create additional examples with those objects.

VII. CONCLUSION

In this paper, we have introduced a novel integration
method between layout computation and existing TMP, to



TABLE I
WE MEASURE VARIOUS STATISTICS, AVERAGED OUT FROM TEN

INDEPENDENT TESTS, OF DIFFERENT METHODS FOR EACH SCENE. THE

NUMBER IN PARENTHESES IS THE NUMBER OF OBJECTS.

Planner HPN [10] CTMP [13]
Priority layer (PL) w/o w/ w/o w/

Planning time [s] 684.52 336.84 594.02 321.88
Living Execution time [s] 122.68 71.79 124.43 72.38
Room PL time [s] 0.00 0.18 0.00 0.16
(10) Actions 84 48 83 48

Distances [m] 57.59 45.00 58.61 45.38
Planning time [s] 347.59 254.40 336.44 259.10
Execution time [s] 86.30 72.70 86.78 72.37

Kitchen PL time [s] 0.00 0.15 0.00 0.16
(10) Actions 55 48 55 48

Distances [m] 50.41 43.02 52.70 44.73
Planning time [s] 305.46 234.41 300.47 250.85

Bed Execution time [s] 86.24 67.37 79.84 64.90
Room PL time [s] 0.00 0.19 0.00 0.17
(10) Actions 51 44 50 44

Distances [m] 61.31 51.80 62.46 52.96
Planning time [s] 796.61 559.44 791.14 519.73

Bed Execution time [s] 174.87 132.82 175.58 131.66
Room PL time [s] 0.00 0.81 0.00 0.73
(20) Actions 116 88 119 88

Distances [m] 125.95 113.74 125.94 109.17
Planning time [s] 1629.68 693.01 1366.79 722.58

Bed Execution time [s] 322.44 211.87 311.63 196.34
Room Layer time [s] 0.00 2.28 0.00 2.16
(30) Actions 214 132 216 132

Distances [m] 170.25 101.10 162.68 102.86

automatically arrange cluttered objects. We constructed a
target layout automatically by considering various relation-
ships between objects that also reflect the user preference
on object arrangement. To arrange objects in the computed
layout, our method plans a series of feasible actions using
the well-known task and motion planner such as HPN and
CTMP. We also proposed a priority layer to arrange objects
efficiently for deciding the order of arranging objects using
our dependency graph and topological sort, while considering
hierarchical relationships.

There are many future directions in automatically arrang-
ing objects using a robot. First, we would like to design
a real-time layout computation method using a recent deep
learning approach. In the current work, we have tested the
usability of our method in the simulation environment. We
believe that this can be easily translated to a real robot with
various sensors, thanks to the mature level of our tested
simulation environment. Nonetheless, it requires additional
techniques, such as balancing a humanoid robot while ma-
neuvering objects, and handling various uncertainty caused
by sensors. Fortunately, these topics have been well studied,
and would like to extend our approach to work well with
these techniques.
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industrial logistics on a skill-equipped robot”, in Workshop on Task
Planning for Intelligent Robots in Service and Manufacturing, 2015.

[19] Harold Szu and Ralph Hartley, “Fast simulated annealing”, Physics
letters A, 1987.

[20] Lester Ingber and Bruce Rosen, “Genetic algorithms and very fast
simulated reannealing: A comparison”, Mathematical and computer
modelling, 1992.

[21] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock,
Ashwin Ram, Manuela Veloso, Daniel Weld, and David Wilkins,
“Pddl-the planning domain definition language”, 1998.

[22] John Schulman, Jonathan Ho, Alex X Lee, Ibrahim Awwal, Henry
Bradlow, and Pieter Abbeel, “Finding locally optimal, collision-free
trajectories with sequential convex optimization.”, in Robotics: science
and systems, 2013.

[23] Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas Funkhouser,
and Pat Hanrahan, “Example-based synthesis of 3d object arrange-
ments”, ACM Transactions on Graphics, 2012.

[24] Scott Kirkpatrick, C Daniel Gelatt, Mario P Vecchi, et al., “Optimiza-
tion by simulated annealing”, science, 1983.


