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Monte Carlo ray tracing is considered one of the most effective tech-
niques for rendering photo-realistic imagery, but it requires a large number
of ray samples to produce converged or even visually pleasing images. We
develop a novel image plane adaptive sampling and reconstruction method
based on local regression theory. A novel local space estimation process is
proposed for employing the local regression, by robustly addressing noisy
high dimensional features. Given the local regression on estimated local
space, we provide a novel two-step optimization process for selecting band-
widths of features locally in a data-driven way. Local weighted regression
is then applied using the computed bandwidths to produce a smooth im-
age reconstruction with well preserved details. We derive an error analysis
to guide our adaptive sampling process at the local space. We demonstrate
that our method produces more accurate and visually pleasing results over
the state-of-the-art techniques across a wide range of rendering effects. Our
method also allows users to use an arbitrary set of features including noisy
features, and robustly computes a subset of them by ignoring noisy features
and decorrelating them for higher quality.

Categories and Subject Descriptors: 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Raytracing

General Terms: Algorithms

Additional Key Words and Phrases: Adaptive rendering, image-space re-
construction, Monte Carlo ray tracing

1. INTRODUCTION

Methods for adaptively rendering and reconstructing images for
Monte Carlo (MC) ray tracing have a long history [Mitchell 1987].
Recent work has made further advances in this space, but the pri-
mary goal remains the same: to improve image quality using a re-
duced number of ray samples in order to gain efficiency. Images
generated with too few ray samples are plagued with noise, and
convergence to a smooth image is quite slow. The key ingredient
of adaptive sampling and reconstruction is to locally perform er-
ror analysis, which guides ray budgets on high error regions while
controlling smoothing for image reconstruction, to produce numer-
ically and visually pleasing rendering results.
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At a high level, adaptive rendering techniques can be classi-
fied as integrand- and image-space approaches. Powerful integrand
methods [Hachisuka et al. 2008] have been proposed, but recent
research efforts have been focusing on designing effective image-
space, adaptive sampling and reconstruction techniques. This is
mainly because the image-space approach is efficient, is simple to
integrate into existing rendering systems, and handles a wide va-
riety of complex rendering effects such as motion blur, depth-of-
field, etc.

Recent image-space reconstruction techniques use well-known
filtering methods proposed in the image processing field such as
Gaussian filters [Rousselle et al. 2011], non-local means [Rousselle
et al. 2012; Li et al. 2012], joint-bilateral filtering [Ritschel et al.
2009; Li et al. 2012; Sen and Darabi 2012], and wavelets [Over-
beck et al. 2009]. A key difference between reconstruction tech-
niques developed in image processing and those used in rendering
is that filtering methods used in rendering are tailored to leverage
different types of available features such as normals, textures, and
depths. Since these features serve as less noisy cues for denoising
MC rendering results, a lot of prior image-space techniques have
utilized some types of features and been able to achieve impressive
rendering results.

These features, unfortunately, can be considered as double-edged
swords. Even features can be very noisy, especially when we have
scenes with complex motion, geometry, textures, and light paths.
Furthermore, different types of features can have varying impor-
tance on the overall filtering process, as demonstrated by a random
parameter filtering [Sen and Darabi 2012]. Nonetheless, these is-
sues have received little or no attention in prior image-space adap-
tive rendering methods that heavily utilize these features.

Contributions. In this paper we propose a novel, weighted local re-
gression based adaptive reconstruction and sampling technique to
effectively handle a wide variety of MC rendering effects. Depart-
ing from prior techniques, we estimate an unknown output function
based on local weighted regression (Sec. 3). This approach enables
us to derive error analysis in a robust way, measure importance of
different types of features, and mitigate the curse of dimensionality
as we consider more features in a consistent and principled way.
Specifically, we provide the following technical contributions:

—We identify a reduced, local feature space that effectively guides
our reconstruction based on a truncated SVD (Singular Value
Decomposition) and perturbation theory (Sec. 4).

—The Mean Squared Error (MSE) of our reconstruction method
is decomposed into bias and variance terms (Sec. 5.1), and
we robustly estimate them based on parametric error analysis
(Sec. 5.3).

—We use partial derivatives to estimate the importance of each
feature type and compute different filtering widths for features
(Sec. 5.2), resulting in effective anisotropic filtering.

—We use the reduced dimension from the local feature space anal-
ysis to optimally distribute rays (Sec. 6).

According to our best knowledge, weighted local regression in a
high dimensional feature space has not been applied to image-space
adaptive rendering, and our adaptive rendering technique based on
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Fig. 1. Equal-time comparisons in the pool scene. The image (b) is generated by 53 uniform low discrepancy samples per pixel (spp). NLM [Rousselle et
al. 2012] leaves high-frequency noise. SURE [Li el al. 2012] and BM3D [Kalantari and Sen 2013] show over-blurred results. As a quantitative measure for
comparisons, we use the relative MSE (rMSE) [Rousselle et al. 2011]. Our method shows a lower rMSE compared to previous methods. In our result (g),
extended feature buffers (i.e., geometries from moving and non-moving objects) are included, and filter bandwidths for the features are automatically chosen.

Model courtesy of Toshiya Hachisuka.

local regression is the first technique integrating robust error anal-
ysis, automatic feature bandwidth selection, and a tightly coupled
approach between reconstruction and sampling in a consistent and
principled way.

To demonstrate benefits of our method we have applied our
method to a variety of benchmarks with different rendering ef-
fects. Our method automatically chooses filtering bandwidths in a
reduced local space given a arbitrary set of geometries (e.g., nor-
mal, texture, and depth). Compared to the state-of-the-art meth-
ods [Rousselle et al. 2012; Li et al. 2012; Kalantari and Sen 2013],
our method shows visually pleasing and numerically better results
across tested benchmarks, thanks to automatic bandwidth selec-
tions and adaptive sampling based on an estimated local feature
space per pixel. In addition our framework is naturally extended to
handle animations in a principled way, which minimizes flickering
artifacts as well as numerical errors.

2. PREVIOUS WORK

Image space reconstruction methods. Image filtering has been
a popular approach to remove noise in images generated by MC
ray tracing, because of its simplicity and efficiency. Rushmeier
and Ward [1994] proposed a nonlinear filter that distributes the en-
ergy of outliers to neighboring pixels in an energy preserving way.
Meyer and Anderson [2006] applied principle component analysis
to removing noise in an animation sequence. Our method also em-
ploy a dimensionality reduction method (i.e., truncated SVD) for
reducing noise in geometric buffers. It has been recognized that
geometric information can play an important role for predicting
edges in rendered images. For example, McCool [1999] proposed
an anisotropic diffusion process guided by geometric features. The
geometric features have also been widely used for quickly produc-
ing reasonable image quality in interactive rendering techniques
[Segovia et al. 2006; Ritschel et al. 2009; Dammertz et al. 2010;
Bauszat et al. 2011; Shirley et al. 2011].

Sen et al. [2012] recently showed that by analyzing the func-
tional relationships between MC inputs and outputs, feature
weights can be computed to achieve high quality image reconstruc-
tions with a low number of samples. While their proposed method
of random parameter filtering (RPF) produces exceptional recon-
struction results, it comes at a high computation and storage cost.
In contrast our method is designed to have both a low storage and

computation overhead, while producing better filtered results effi-
ciently.

Our method departs from earlier work in that it is derived from
local regression theory appearing in the statistics literature [Cleve-
land and Loader 1996; Ruppert and Wand 1994]. We reconstruct a
surface, allowing us to efficiently estimate bias, variance, and par-
tial derivatives, which play a crucial role in our error analysis. This
in turn allows us to select ideal filter widths across multiple feature
dimensions.

Multi-dimensional reconstruction and sampling. Numerous
methods have been proposed that operate in integrand space, where
reconstruction and sampling is performed in high dimensions.
Hachisuka er al. [2008] proposed a general multi-dimensional
adaptive rendering method that reconstructs smooth images us-
ing Riemann sums. This method works well in a low dimensional
space, however its effectiveness rapidly degrades as the dimension
increases. Similar approaches have been proposed to examine a re-
duced set of effects to mitigate the so-called curse of dimension-
ality. The shared reconstruction filters based on frequency analysis
were designed for efficiently rendering depth-of-field effects [Soler
et al. 2009], motion blur [Egan et al. 2009], soft shadows [Egan
et al. 2011], and ambient occlusions [Egan et al. 2011]. Recently,
Belcour er al. [2013] proposed a 5D frequency analysis for effi-
ciently handling depth-of-field and motion blur effects. Lehtinen et
al. [2011] proposed a reconstruction method by using depth and
motion information of per sample to synthesize depth-of-field, mo-
tion blur, and soft shadows. Lehtinen ef al. [2012] developed an
advanced filter that reuses rays across pixels for a high quality re-
construction of indirect illuminations. While multi-dimensional re-
construction and sampling methods have shown exceptional per-
formance even with a small number of samples per pixel, these ap-
proaches often focused on specific rendering effects. The generality
of our method allows us to work across a wide range of effects. In
addition, we are able to determine an appropriate, reduced dimen-
sional feature subspace locally, avoiding an unnecessary growth in
dimension and improving efficiency.

Image space adaptive rendering. We now detail the techniques
that are most closely related to our method. Overbeck et al. [2009]
developed a framework that treats sampling and reconstruction as a
coupled iterative process. They decompose the image into wavelets
and apply shrinkage to the coefficients to reduce noise. The same
iterative framework has been adopted by more recent works [Rous-
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Fig. 2. The reference image (a) with its zoomed image (b) within the ma-
genta box is generated with 64K samples per pixel in the pool scene. Inten-
sity plots (c) and (d) are generated based on data along the blue horizontal
line in the magenta box. The intensity plot (c) of image position shows a
strong variation due to a noisy texture, but this non-linearity in the image
position becomes an almost linear function in the texture space (d).

selle et al. 2011; 2012; Li et al. 2012; Kalantari and Sen 2013], and
is also a foundation upon which we build our research.

Rousselle et al. [2011] demonstrated improved image quality
by greedily selecting an appropriate isotropic filtering bandwidth
locally across the image. This work was further improved by in-
troducing state-of-the-art anisotropic filtering methods such as the
cross bilateral and non-local means filters [Rousselle et al. 2012; Li
et al. 2012]. Li et al. [2012] adopted Stein’s unbiased risk estimator
for sampling and bandwidth selection. Using this estimator their
system is capable of supporting a wide range of anisotropic filters
including the cross bilateral and non-local means. One limitation
of their work is that their bandwidth selection process is over the
spatial dimension and relies on a set of fixed global parameters for
controlling the influence of other geometric features such as depth,
texture, and normals. As shown by Sen ef al. [2012] analyzing the
functional relationship between the geometric feature information
and output intensity can significantly improve image quality. Our
work addresses this problem by performing an optimal bandwidth
selection locally for different feature types.

3. LOCAL REGRESSION BASED FILTERING

In this section we give a brief background on local regression and
its application to reconstruction. Local regression [Cleveland and
Loader 1996; Ruppert and Wand 1994] is a smoothing method for
fitting parametric curves or surfaces, f(x), based on a neighbor-
hood of x. Its underlying statistical model is:

y=f(x)+e 6))

where y and x denote R'-valued response variable and R”-valued
predictor variables, respectively. The noise € is modeled by additive
random noise that has zero mean and bounded variance.

In our problem y € R! and f(x) € R! denote a noisy MC in-
put image and an unknown ground truth image, respectively. Given
color images as the input, we apply our method to each channel
independently. The feature vector x € RP has D dimensions that
includes image positions as well as any arbitrary set of additional
geometric information including textures, depth, and normals. To
compute the feature vector at a pixel we average out geometries
computed from multiple primary rays. The statistical model as-
sumes that x is a noise-free R vector, but it is well-known that
the feature vector x can be noisy due to distributed effects such as
depth of fields. We address this problem by a regularization method
(Sec. 4) that is a crucial part for employing local regression in ren-
dering.

The unknown intensity f(x) at x nearby a center feature vector
x¢ can be approximated locally based on a Taylor polynomial of
order one as follows:

f(x) = f(x°) + Vf(x)" (x —x°). 2)

For simplicity let the coefficients of the local linear model for the
unknown image value f(x¢) and its gradient V f(x) be « and 3
respectively. A weighted least squares minimization can be formu-
lated to determine the unknown coefficients o and 3 as follows:

i

.8 = min 3 (0~ 57 =) ()
3)

where x° and 3’ are the feature vector and intensity at pixel i, re-
spectively. The value of n denotes the number of pixels within a
square window region centered around pixel c. For filtering of a
center feature vector x¢ we define its neighboring feature vectors
as X’ in a filtering window. The computed coefficients & and B
then correspond to the filtered image and estimated gradient for our

reconstruction problem, respectively. The term HjD:lw ;lbjf >
is a chosen multi-dimensional kernel based on the product of 1-D
kernels. The kernel w(-) is commonly chosen to be a symmetric
decreasing function (e.g., Gaussian or Epanechnikov kernel) for al-
locating high weights to close samples from x¢. Note that the dis-
tance is computed in the feature space R”. The bandwidth term
hb; controls filtering bandwidth for the j-th feature. In our formu-
lation we have chosen to separate the bandwidth component into
two separate terms: b; that varies per feature, and a scaling factor
h that is shared across all feature types. This breakdown aids in the
process of selecting optimal bandwidths for reconstruction and will
be discussed in more detail in Sec. 5.

Note that the minimization of Eq. 3 is also used in filtering meth-
ods based on a linear regression with uniform weighting [Bauszat
et al. 2011; He et al. 2013]. The main difference between these
prior approaches and our optimization goal (Eq. 3) is in the kernel
function w(-). The uniform kernel, i.e. w(-) = 1, is used in the
prior filtering methods, since it is simple and efficient. On the other
hand, our formulation uses a general kernel function that allows a
set of bandwidths hb; enabling a higher reconstruction quality.

Local linear approximation in the feature space. Our approach
locally approximates an unknown image function f(x) with a low
order polynomial in a feature space x € RP. This approach could
be seen as counter-intuitive, since the unknown function of a ren-
dered image has discontinuities introduced by a variety of render-
ing effects and is thus typically nonlinear. Our key observation is
that the non-linearity in the 2D image space can be well approxi-
mated by the local linear model in a high dimensional feature space,
as shown in Fig. 2. In rendering, some effects can be nonlinear even
in the presence of a high dimensional feature space. In such cases
our local linear model can create a bias due to the curvature of the
signal being reconstructed. To minimize bias as well as variance
we propose a two-step optimization method (Sec. 5). We have con-
sidered other alternatives such as logistic regression for handling
such discontinuities as well as higher order local regression, but
found that our weighted linear local regression strikes an excellent
balance between denoising quality and computational efficiency,
while preserving feature edges well.

Normal equation. The optimization problem shown in Eq. 3 has
the following closed form solution, i.e. normal equation:

(6,07 = (XTWX) ' XTWy, 4)
where X is the nx (D + 1) design matrix whose i-th row is set as

[1, (x* —x¢)T], and Y is the nx 1 output vector Y = [y!, ..., y"]7.
The matrix W is an nxn diagonal matrix, whose elements are de-

fined by the weight function T2, w( x;L;xj ).
J
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. 2N = y e g |
c) Result with rank = 2 i =9 (e) Ours using (b)
filtering time 4.3 s filtering time 20.6 s filtering time 7.2 s
rMSE 0.01257 rMSE 0.00666 rMSE 0.00488
Fig. 3. Given an input image (a), we compute local dimensions (b) based
on our TSVD. The reconstructed images by using a global small (c) or large
rank (d) show over-blurred artifacts in the in-focused region (magenta box)
or noise in defocused region (green box), respectively. Our method (e) based
on locally determined ranks is visually and numerically better than the re-
sults (c) and (d). In addition, our method (e) has a lower filtering over-
head compared to the method using the large rank (d). Model courtesy of
Guillermo M. Leal Llaguno.

Intuitively speaking, the bandwidths hb; act as smoothing pa-
rameters; controlling the trade-off between bias and variance of our
local regression based reconstruction method. We present our op-
timization process in Sec. 5 to choose bandwidth parameters such
that we minimize the Mean Squared Error (MSE) of our reconstruc-
tion.

The normal equation with feature vectors defined in a global
space R unfortunately can be unstable and require a high cost
of computation as we consider more types of features. Instead of
working directly in the D dimensional feature space, we propose
using truncated singular value decomposition (TSVD) to generate
an appropriate reduced dimensional local coordinates to solve our
weighted least squares optimization problem (Sec. 4).

By using local regression and performing error analysis for our
problem in a principled way, our approach has some significant dif-
ferences when compared to prior methods. First, our method locally
reconstructs a parametric function and minimizes its reconstruction
error more robustly over prior approaches [Rousselle et al. 2011;
2012; Li et al. 2012] that perform point estimation on f(x). Sec-
ond, our method can measure the importance of different types of
features by estimating second partial derivatives for features and
even ignore noisy input features. Finally, our error analysis is nat-
urally combined with sampling, to guide available ray sample bud-
gets.

4. TSVD BASED LOCAL REGRESSION

Common local regression methods assume that input predictor vari-
ables are not noisy, while response variables have noise. Unfortu-
nately, our feature vectors can also carry a significant amount of
noise. To address this problem we construct a reduced feature space
using truncated SVD (TSVD) for solving Eq. 3.

Before solving the optimization problem (Eq. 3) at every pixel,
we use singular value decomposition (SVD) as a means to construct
a reduced feature space locally defined in a filtering window. The
feature vector x in a global space is transformed into a vector z in
the local space. We then perform our optimization in the reduced
feature space.

The coordinate transformation provided by SVD gives us an el-
egant means to robustly handle rank deficient systems commonly
encountered. When combined with perturbation theory, we are able
to pre-filter the matrix space for reducing noise that would lead
to poor conditioning and failed reconstruction. At a high level,
we can consider this process as a pre-filtering process that re-
duces noise contained in feature vectors, and it does not depend
on the response variable (i.e., intensity). Furthermore, the coordi-
nate transformation enables us to identify new orthogonal feature
types, which are linearly combined with some of original feature
types. For example, when a 3D input feature vector [x1, X2, X3]
is given, the reduced space computed by SVD can be a 2D vector
[Xl, O.5X2 + 05X3]

Let us define a nx D matrix Z, whose i-th row is set as [(x® —
%)T], where % is a mean vector whose j-th component is computed
as X; = 1/n) ", x}. The SVD on Z leads to a factorization

Z =USVT, where U and V are nxn and D x D unitary matrices.
Also, S is the nx D diagonal matrix, where diagonal entries, o,,,
are ordered singular values in the non-increasing order.

To solve the noise problem we apply truncated SVD based on
perturbation theory [Hansen 1987], which filters out small singular
values that fall below a threshold 7 by setting them to be zero. This
is based on the observation that small singular values are often a
result of corruption from noise, and these small corruptions lead to
significant changes in the least squares solutions [Hansen 1987]. To
adaptively select the threshold 7, we rely on perturbation theory to
provide us with a principled approach for selecting an appropriate
threshold value of 7.

From a perturbation theory perspective, a perturbation matrix Z
isexpressed by Z = u(Z)+E, where u(Z) is the ground truth ma-
trix and E is the perturbation matrix containing error and noise. We
then have the following Weyl’s perturbation bound [Stewart 1993]:

o = Gm| < [|E]2; )

where o, and &, are the m-th singular value of u(Z) and Z,
respectively. Also, || E'||2 is the spectral norm of E.

In our problem u(Z) can be obtained with an infinite num-
ber of ray samples, and E indicates the perturbation structure on
Z introduced by MC ray tracing. By the central limit theorem
and independence property of MC ray samples !, we can estimate
the noisy matrix E. Specifically, we assume each element in Z
follows a normal distribution, Z;; ~ N (x} —x;,var(x})). In
this model, var(X;) is assumed to be zero, since the term is de-
fined as var(X;) = 1/n*3 " var(x’) and tends to be very
small due to the 1/n? term. We then model each element in E as

E;; = (var(x})) '/?_ We estimate the unknown variance var(x})
as the variance of the sample mean of j-th feature at pixel ¢, and it
is computed at each pixel by using the samples generated by Monte
Carlo ray tracing.

The Weyl’s perturbation bound in Eq. 5 gives us upper and lower
bounds for a range of o, given observed values &, and F. Ac-
cording to these lower and upper bounds, potential values for o,
can be negative or zero, when &, is equal to or lower than || E||2.
Since o,,, cannot be negative or zero, we set 7 conservatively to be
C||E||2. In our test scenes, we set C' as 2 to remove the perturbation
effects as long as possible. For example, we observed that using a
relatively large constant C' = 2 tends to generate visually smooth
results in defocused regions (e.g., Fig. 3). On the other hand, when a
smaller constant C' = 1 is used, the MSE can be further improved.

I Based on the central limit theorem, the distribution of sample means goes
to a normal distribution as sample count increases. In addition the approxi-
mation quality depends on the number of samples [Moon et al. 2013].
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(b) Derivatives (c) Bandwidths (d) Linear approx.  (e) Ours

(a) Input

Fig. 4. Given a noisy step function (a), estimated derivatives (b) and band-
widths (c) computed for image position z are visualized. In this example,
we do not use any geometries. While the linear approximation (d) with a
large global bandwidth produces over-blurred results, our method (e) guided
by the estimated bandwidths (c) preserves the strong edge.

However, this often comes at the expense of increased noise. We
found that the relative difference in MSE between using C' = 1
and C' = 2 in practice is not high (e.g. from 0.00488 to 0.00431).
Thus we have chosen C' = 2 for making more visually pleasing
images.

After performing SVD and identifying the k biggest singular val-
ues by filtering out small ones based on perturbation theory, we then
approximate the matrix Z as those k largest singular values and cor-
responding singular vectors. This can be expressed by a compact
form Z =~ Uy Sy V), where Uy, and V}, are nxk and D xk reduced
unitary matrix respectively, and S, is the diagonal singular matrix
that has k non-zero singular values. In our problem, || E'||2 tends to
monotonically decrease as a function of the number of samples. As
a result, the bias introduced by the k-rank approximation goes to
Zero.

Given a input vector x € RP defined in a global space, the vector
is transformed to a local space by using a vector-matrix multiplica-
tion z = V;Tx € R*. Since each column of the unitary matrix V}
is an orthonormal basis geometrically, this transformation can be
considered as a projection on the basis. The optimization problem
(Eq. 3) is then modified as follows:

min (yl —a— 8%z - zc))QH;?:lw (Zjh; Z]) . (6)
5 j

Note that the coefficients o and (3 estimated by the optimization
correspond to the unknown image value f(z¢) and its gradient
V f(z¢), respectively, in the transformed space R*. Also, the i-th
row in the design matrix X of the normal equation (Eq. 4) is re-
placed with [1, (z* — z°)T].

Fig. 3 shows reconstruction results computed by using a global
rank or locally adaptive ranks determined by our TSVD. The lo-
cal dimension selection shows visually pleasing images as well as
numerically correct images compared to the user-specified dimen-
sions. In addition, since most regions in our method have relatively
small dimensions (e.g., 2 to 4), our filtering time (e.g., 7.2 sec.) is
more than two times faster than the time required to filter using
the full rank. Furthermore, even in the focused areas, the selected
dimension can be lower than the input dimension (e.g., 9). Tech-
nically, when there is strong dependency between input features,
our method can decorrelate them and generate a lower dimension
thanks to TSVD. As a result, users can use many features for high
quality reconstruction, while our method can efficiently perform
filtering with a proper set of features in the reduced local space.
For examples, even in the focused scene of killeroo-gold (Fig. 5),
the average rank is low (e.g., 3.5 for 32 spp), which results from
removing the dependency between input features.

To solve the modified optimization problem (Eq. 6), optimizing
bandwidths hb; should be determined locally, and is described in
the next section (Sec. 5). Note that the bandwidths determines rel-
ative importance of each orthogonal feature z;, not for the input
feature x;.

Algorithm 1 Local Regression based Adaptive Rendering

Input: Feature vector x* and intensity y* generated by renderer
Output: Sampling map for the next rendering pass or final output
for each pixel center ¢ do
Compute transformed feature z* and z¢ using TSVD (Sec. 4)
Estimate b based on second partial derivatives (Sec. 5.2)
for each h € {hunin, Pimas } do
Compute f,,,(2¢) using local linear regression
Estimate bias and variance of f1,(z) (Sec. 5.3)
end for
Compute h,p; using parametric error analysis (Sec. 5.3)

Compute f,,,,n(z°) using local linear regression
end for
if Sampling budget remains then
return a sampling map based on ArM SFE(x) (Sec. 6)
else R
return fp,, b (2°)
end if

5. ADAPTIVE RECONSTRUCTION

Given the transformed features by using TSVD (Sec. 4), we solve
the optimization problem (Eq. 6) to reconstruct a high quality im-
age. As shown in Fig. 4, the linear approximation fails to preserve
edges when the geometric information does not help predict the
edges. However, the linear approximation guided by local band-
width selections preserves the edge thanks to the small bandwidths
selected on the edges. In this section, we detail a novel two-step
bandwidth selection algorithm that estimates optimal feature band-
widths b, and shared bandwidth h separately. Pseudocode for our
overall algorithm is provided in Algorithm 1. We begin by formal-
izing the goal of our reconstruction method and provide the high
level overview of our approach (Sec. 5.1), followed by our opti-
mization process selecting optimal filter bandwidths (Sec. 5.2 and
Sec. 5.3).

5.1 Optimization Goal

The goal of our local regression based filtering is to minimize
MSE, Awhich consists oif the bias and variance terms: MSE =
bias(fup(2))? + var(fup(z)) by adjusting reconstruction band-
widths hb; in Eq. 6, where h is a shared bandwidth for modulating
the magnitude of all the feature bandwidths and b; controls j-th
feature bandwidth for feature types in the local feature space. We
seek a set of bandwidths hb; that reduce MSE of each pixel; h and
b; are defined for each pixel, but we do not explicitly encode that
information in their notations for simplicity.

One may consider well-known estimators such as a local cross
validation [Cleveland and Loader 1996] and Stein’s unbiased
risk [Li et al. 2012] that work as a surrogate of MSE. Given
one of these estimators, we could test all the possible combina-
tions of bandwidth values within a user-defined set (e.g., hb; €
{0.2,0.4,0.6,0.8,1.0}). We can then select an optimal bandwidth
that minimizes the error. This approach unfortunately requires an
exponentially growing number of tests, as we consider including a
greater number of features which lead to higher quality reconstruc-
tions. Furthermore, the number of features can be high, since dif-
ferent features such as geometry introduced by secondary rays [Sen
and Darabi 2012] can be also used for high quality reconstruction.
As an alternative, one can solve only a subset (e.g., the spatial fil-
ter’s bandwidth in cross bilateral) of all the feature bandwidths [Li
et al. 2012], but this approach results in a sub-optimal solution.
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Departing from these alternatives, we use well-established bias
and variance estimators developed from the local regression liter-
ature [Ruppert and Wand 1994]. The bias term has the following
asymptotic relationship:

bias(frp(z)) x 0.5h%trace(BH fup(z)), 7

where a diagonal matrix B is set as diag(b?, ..., b2), trace(.) is
the matrix trace, and H f51,(2z) is the Hessian matrix. In addition,

sar (ot o ==

(z)R*ITE_ b, ®)

where n(z) denotes the number of samples at z.

One noticeable advantage of using these expressions compared
to the general estimators is that the bias and variance term are func-
tions of bandwidths. Unfortunately, the challenging problem of op-
timizing bandwidths even with these expressions remains in prac-
tice, since the asymptotic expressions merely gives the asymptotic
relationship; the optimal bandwidths are not directly computable
from the asymptotic expression. This is the main reason why we
propose a novel two-step optimization process for estimating opti-
mal bandwidths by considering the asymptotic theory as a crucial
hint. Specifically, based on the functional relationship, we propose
an estimation process of per-feature bandwidths b; by estimating
their corresponding second partial derivatives (Sec. 5.2). We then
optimize the shared bandwidth h given the estimated feature band-
widths (Sec. 5.3).

5.2 Estimating Feature Bandwidths b;

Since the matrix B is a diagonal matrix, the asymptotic bias term
(Eq. 7) is reduced to 0.5k Zle b3 %. The asymptotic bias term
J

consists of multiple bias terms, each of which is introduced from
each feature subspace. The amount of bias caused by considering

. . 2 o
j-th feature z; is proportional to (hbﬂﬂ%\. Intuitively, select-
i

ing a small bandwidth for a feature with a strong second partial
derivative is desirable to reduce its corresponding bias, according
to the asymptotic bias expression. Small bandwidths, however, lead
to an increase in the asymptotic variance expression (Eq. 8). In
other words, the second derivatives tell us the relative impact that
each feature has on our reconstruction error. Our key idea, two-step
bandwidth selection, is to estimate b by using the relation between
the bias term and the second derivatives, followed by adjusting the
shared bandwidth term h by considering both the asymptotic bias
and variance expression.

Given h the bias (Eq. 7) is computed as a weighted sum of b? and

2 2 . . .
| 275 |. We therefore choose b; to be | 275 | 70-5. Given this equation,
2 .

our next goal is to estimate the second partial derivatives of the
unknown function f(z).

Estimating derivatives or the Hessian matrix has been a cru-
cial part for predicting or minimizing errors for various rendering
problems, and it is often tailored to target problems. For exam-
ple, the irradiance Hessian is estimated on surfaces for irradiance
caching [Schwarzhaupt et al. 2012], and derivatives of radiances
are estimated using derivatives of kernel functions in progressive
photon mapping [Hachisuka et al. 2010]. We also estimate the Hes-
sian H within our framework. One of the fundamental benefits of
our formulation based on local regression is that we can easily es-
timate second partial derivatives using quadratic local regression at
each pixel, and analytic second derivatives are directly computable
from the quadratic solution form.

In our feature bandwidth selection, we do not use off-diagonal
terms in the Hessian H since those terms do not affect the asymp-

Table I. rtMSE of our local linear regression as a function of the
bandwidth h, used in our local quadratic fitting

[ hq [ 04 [ 06 [ 08 [ 10 |

San Miguel (128 spp) | 0.00476 | 0.00462 | 0.00472 | 0.00488

killeroo-gold (32 spp) | 0.00174 | 0.00167 | 0.00169 | 0.00176

totic bias expression (Eq. 7). In order to lessen the computational
burden of fitting a full quadratic form, we use a partial quadratic fit-
ting ignoring the off-diagonal terms in the Hessian. This estimation
process corresponds to the following optimization:

n i c

. . 24 Z, —Z;
min (y' — ag — B, Az — 4T A%z) H;?:lw <7

oq:Bq:v hq

)

where Az = (z° — z¢) and A%z = Az(Az)T. In addition, h,
is an additional bandwidth for controlling a bias-variance trade-
off. In order to solve this optimization problem, we use the normal
equation (Eq. 4). The i-th row in the design matrix X is set with
[1,(Az)7T, (A22)"]. After computing the equation, the estimated
32

In order to perform the quadratic local regression we also need to
select an additional bandwidth h; note that the bandwidth in this
derivative estimation is different from hb; used for our main lin-
ear regression that we aim to optimize. Estimating the bandwidth
hg is far more difficult than hb;, since it is related to estimating
higher order derivatives [Ruppert and Wand 1994]. In addition, es-
timating second derivative information given samples can be quite
noisy, compared to estimating the unknown function f(z). Fortu-
nately, as shown in Table I, we found that different choices for h,
for quadratic local quadratic regression have little impact on the fi-
nal MSE results obtained. This can be explained by the fact that h,
is only used to compute the relative importance between each b;.
In our optimization, the feature bandwidth b; mainly estimates the
relative magnitude of bandwidths based on estimated derivatives,
and the global bandwidth A modulates all the magnitudes of the
feature bandwidths b;.

We found that estimated derivatives can be noisy when the band-
width h is too small (e.g., 0.4). Noisy derivatives then lead to noise
in our estimated feature bandwidths. Fortunately since we are us-
ing the derivatives to estimate only the relative bandwidth between
features, we have found it sufficient to set &, to be reasonably large
(i.e., hq = 1). This choice suppresses noise in the estimated deriva-
tives while still capturing the relative importance between features.

Alternatively, one may attempt to use an additional optimiza-
tion process to estimate an optimal h, using well-known local risk
estimators such as a local cross validation [Cleveland and Loader
1996]. In practice we believe this approach is undesirable since
it requires significant computational overhead while yielding only
modest gains over our fixed choice of bandwidth.

Fig. 5 shows estimated optimal bandwidths for the first three fea-
tures z;. As shown in the first row, each bandwidth is differently
selected by considering estimated second derivatives. Considering
our feature bandwidths gives not only visually pleasing, but also
numerically accurate results, since its introduced bias is minimized
thanks to choosing a small bandwidth on the dimension that has
high curvatures (i.e., high second partial derivatives).

2; is used as an estimator for

5.3 Parametric Error Estimation

Given feature bandwidths b; estimated in the last section we now
focus on optimizing the shared bandwidth A, in terms of minimiz-
ing MSE. Our error analysis first fits parametric curves for bias and

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



Adaptive Rendering based on Weighted Local Regression . 7

(f) Result with hb; = 1
rMSE 0.14781

rMSE 0.00886 rMSE 0.00176

Fig. 5. Input image (a) is generated with 32 uniform spp, and estimated
bandwidths (b), (¢) and (d) on first three dimensions are visualized. The
result images (e) and (f) are generated without our two-step optimization
process, and thus we use a user-defined small bandwidth (i.e., hb; = 0.2)
and a large bandwidth (i.e., hb; = 1). By using our two-step optimization,
our result image (g) preserves the highlights (magenta box) thanks to small
bandwidths hb; on the region. In addition, our method removes the spike
noise on the floor (green box) owing to large bandwidths. Model courtesy
of headus/Rezard.

variance terms of MSE, as a function of the shared bandwidth pa-
rameter h, and then analytically optimizes h to minimize MSE.

One may attempt to directly use the asymptotic expressions
for estimating optimal bandwidths. This approach is referred to
as plug-in bandwidth selection [Cleveland and Loader 1996]. The
caveat of this approach is the poor behavior with a small number of
samples, because the asymptotic expression itself assumes a large
number of samples. Our key idea is to utilize only functional rela-
tionships between b; and second partial derivatives (Sec. 5.2), also
between h and errors (Sec. 5.3).

One can easily show that our weighted local regression is a linear
smoother in the output f(z). The estimation result f;(z) at z can
be then expressed by f,(z) = >, li(z)y’, where I} (z) is a
weight for the noisy output y* given the shared bandwidth A. In our
notation, we drop the feature bandwidths b, since these are given
values in this stage. Based on this linear property, we can derive the
bias and variance expression for the small sample count. The bias

of fy,(z) is then reformulated as follows:

= Zli(z)f(zi) — f(z) (- Eq. )

=> L=y -y (10)
i=1

The observed values y* and y from the pixel filter (e.g., box fil-
ter) provided by users are typically considered as unbiased estima-
tion of the unknown f(z') and f(z) [Rousselle et al. 2011]. As a
result, the unbiased estimation for the bias term is then achieved
as Yo, It (z)y" — y, when we plug-in y* and y to the unknown
f(z%) and f(z), respectively. The variance of our reconstruction
method can be represented in a similar manner:

var(fu(2)) =Y (1i(2))* var(y’), (11

=1

where var(y?) is the variance of the sample mean at pixel i.
As the first step for optimizing h we apply our linear local re-
gression method with different bandwidth values for & in a range of

= / ” SO
(a) Result (h=1) (b) Inset of (a) d) Ours

(c) SURE (

Fig. 6. Given a filtering result ((a) and (b)), our estimated MSE (d) is com-
pared with SURE (c) and reference (e). Our estimation is less noisy com-
pared to the result estimated by SURE, and shows a similar pattern with its
reference.

(e) Ref. MSE

[Mmins Pumax]. This process provides us with a paired list of & val-
ues and corresponding bias values according to the unbiased bias
estimator shown in Eq. 10; note that we do not use the asymptotic
bias equation for this process.

As the second step we fit a curve based on ordinary least
squares with observed pairs, to generate a parametric bias func-
tion, bias(fy(z)), as a function of h. To use ordinary least squares,

a proper model for bias(f1,(z)) should be chosen in terms of h. For
the parametric bias function, we employ the functional relationship
between bias and h shown in the asymptotic bias equation (Eq. 7).
As a result, we use the following quadratic form:

bias(fu(z)) = Ao + A h%. (12)

Coefficients Ao and A; then can be easily estimated by ordinary
least squares.

To construct a parametric curve for the variance term, we also
utilize the functional relationship captured in the asymptotic vari-
ance expression (Eq. 8). A polynomial model of the variance term
is set as:

var(fn(z)) = (Ko + %) n(lz) 13)

The coefficients ¢ and k;, are also computed using ordinary least
squares.

Based on estimated two parametric curves bias(fy(z)) and
var(fi(2)), and feature bandwidths b;, we can parametrize our

MSE as M SE(fy(z)), with respect to the shared bandwidth h.
Since two parametric curves are monotonic functions as a func-
tion h, one can analytically compute the optimal bandwidth as

1
_ _kr1  FF2 OMSE(z) _ i
Ropt = @ based on o = 0. In addition, an
estimated MSE of the reconstructed image with h,,: is set as
MSEhop,« (Z)

Our shared bandwidth selection idea can be considered as a
smoothing process based on the asymptotic expressions, and our es-
timated MSE is not an unbiased estimator. Introduced bias from our
curve fitting is, however, asymptotically small since we use leading
terms of the asymptotic expression.

‘We have tested the error estimation quality of our method against
its ground truth MSE. To estimate the ground truth, we repeat our
filtering performed with a fixed shared bandwidth, e.g., h = 1,
on many input images (e.g., 1000 images) generated by uniformly
sampled 32 rays per pixel. Fig. 6 shows our estimated MSE, Stein’s
unbiased risk (SURE) [Li et al. 2012], and the ground truth MSE.
The error map estimated by SURE contains more noises compared
to our estimation, and thus it requires an additional filtering on the
map to achieve a smooth bandwidth and sampling, as demonstrated
in the previous work [Li et al. 2012]. Our MSE map shows slightly
under-estimated results in the head of the killeroo compared to the
reference map. Our estimated error, however, shows a similar pat-
tern compared to the ground truth, especially in highlights of the
killeroo. As a result, our estimated shared bandwidth h can produce
more numerically accurate results. For example, our result (Fig. 5
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e
a) Input 32 spp
rMSE 0.02370

(b) Results with uniform
weights, rMSE 0.50889

(c) Ours

rMSE 0.00176

Fig. 7. Comparisons with the simple local linear regression [Bauszat et al.
2011]. While the result based on uniform weight kernels (b) preserves the
checkerboard texture (green box) well, the highlights (magenta box) are
completely removed. Our result (c) with a general weight kernel based on
our two-step bandwidth optimization shows better results visually and nu-
merically.

(g)) with the estimated shared bandwidth h shows a lower MSE
(e.g., 0.00176) compared to the MSE (e.g., 0.00604) of the result
(Fig. 6 (a)) without using the shared bandwidth (i.e., h = 1). Note
that the two methods use our feature bandwidths b;.

One may prefer using a simple local regression without our two-
step optimization for simplicity and efficiency, as adopted for in-
teractive rendering [Bauszat et al. 2011]. For example, we can
solve the optimization (Eq. 6) with an uniform weight kernel (i.e.,
w(.) = 1). In this case we do not need to compute optimal band-
widths, while we still use our TSVD. As shown in Fig. 7, this
simpler approach preserves checkerboard textures well, since those
edges are well approximated in a local linear function. It, however,
fails to preserve the detailed highlights. Instead, our method with
non-uniform and general kernels adapts bandwidths locally based
on our estimated error, making it possible to reduce reconstruction
error and thus achieve a higher quality.

6. ADAPTIVE SAMPLING

We use a common iterative approach [Rousselle et al. 2011; Li et al.
2012] to allocate available ray samples to regions with high errors.
As an initial iteration we uniformly distribute a small number of
ray samples (e.g., four ray samples per pixel). In subsequent it-
erations we predict an error reduction AM SE(z) for a pixel z,
when the pixel would receive one additional sample. We then de-
cide the number of samples, An(z), according to relative values of
AMSE(z).

The main difference in our method over the existing iterative
sampling methods is that we use our error metric, which is de-
pendent on the local, reduced feature subspace k, not the original
feature space D.

Since we perform our reconstruction with the computed opti-
mal shared bandwidth h,,, its reconstruction error is estimated as

1
MSEy,,, (z), where hop, = 4;%’:11&) F+%_ One can easily show
that bias and variance terms of our method with £, have the same

reduction rate of n(z)_%ﬂ; deriving these terms can be done by
putting h,,; into bias and variance terms biasy,(z) and vary,(z)
fitted in Sec. 5.3. M SE(z) of our reconstruction method in turn
reduces in the same rate. AM SF(z) is defined as the reduction of

MSE, and this term is computed as M SFE(z) X n(z)fﬁ4 by using
the reduction rate.

In order to consider human visual perception that is more sen-
sitive to darker areas we use the relative MSE [Rousselle et al.
2011], dubbed rMSE, and then ArM SE(z) is defined as the fol-
lowing: ArMSE(z) = 7Af¥SE_~EZ), where ¢ is used to avoid the

hopt
divide-by-zero and is set to be 0.001 in practice. We then set the
number of samples An(z) for a pixel z, according to its relative
reduction rate over the sum from all the pixels. In other words,

rMSE 0.00121

Fig. 8. Given an input image (a), we adaptively allocate more ray samples
until the average number of samples is 32. Our sampling map (b) and a ref-
erence sampling map (c) visualize the average sample count per pixel, and
those sampling maps are computed by our sampling metric and by ground
truth MSE metric, respectively. The correlation between two sampling map
is 0.78. In terms of the numerical accuracy, our result using (b) is slightly
worse (e.g., 9%) than the reference result using (c).

rMSE 0.00111

ZS71(Z) _ ArMSE(z) .
>t ArMSE(z?)
pixel z by low discrepancy sampling, a common practical choice.
Fig. 8 shows our sampling map generated by our sampling met-
ric, and a reference sampling map generated by the ground truth
tMSE, rMSE,(z). rMSE,(z) can be computed by repeating
our filtering process on randomly generated input images in N
times; the exact computation is only possible with N = co. We set
N = 1000, and the reference image generated by 16 K ray samples

isused as f(z) in the IMSE equation as: ArM SEy(z) = %.

AMSEy is hard to be exactly computed, but is simply defined

We generate An(z) samples for the

by multiplying the reduction rate n(z)fk%4 to MSE,, since we
took the same approach for computing AM SE. We then allocate
_ ArMSEg4(z)

T Yt ATrMSE4(zt)"
pling map shows a high correlation, 0.78, with the reference sam-
pling map. The filtered results in comparison with the reference
sampling map are both visually and numerically similar, demon-
strating the high quality approximation of our error estimation
method.

ground truth ray samples, An(z), Our sam-

7. IMPLEMENTATION DETAILS

We have implemented our method on top of pbrt2 [Pharr and
Humphreys 2010], and our reconstruction is implemented by using
CUDA. We accumulate each feature and color buffers in our sam-
pling phase, and store the buffers in the texture memory of GPU
for running our reconstruction. We uses a CUDA implementation
of the Jacobi iterations [Nash 1975] to compute SVD.

We consider four feature types resulting in a 9 dimensional space
for images: 2D coordinates, 3D normals, 1D depths, and 3D tex-
tures of primary rays. We normalize features since the range of
features can be different [Sen and Darabi 2012]. Specifically, we
find maximum and minimum values per feature within a filtering
window, and original values are mapped linearly to the range [0, 1].

We use a box filter with a small width (e.g., 0.5) for the
pixel filter, which is one of the commonly used filters [Pharr
and Humphreys 2010]. We use the optimal Epanechnikov kernel
w(t) = 3(1 —t?) for |t| < 1, as the kernel function in Eq. 3. Un-
til we reach the average sample count provided by users, we use a
small number of iterations (e.g., 5), where additional samples are
allocated by our adaptive sampling.
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T ?
a) Ours 115 spp (b) LD 128 spp
(660 s) rMSE 0.00448 (665 s) rMSE 0.06288

<) NLM 115 spp
(665 s) IMSE 0.01242

(e) Ours 115 spp
(660 s) rMSE 0.00448

(d) SURE 113 spp
(665 s) rMSE 0.01521

(f) Reference
16K spp

Fig. 9. Equal-time adaptive rendering results in the San Miguel scene. Our method shows more visually pleasing results on both defocused (the top row) and
focused regions (the bottom row), and has numerically better results, about 3:1 reduction ratios on average, over NLM and SURE.

For all the tests we use a 11 x 11 filtering window for inter-
mediate iterations, and use 19 x 19 filtering window for the final
reconstruction. We test five different values for A in the range of
[Amins Pmax], @s mentioned in Sec. 5.3. These five values are de-
fined as follows: [0.2 = Apin,0.4,0.6,0.8,1.0 = hya]-

Pixel-based local regression. We have implemented our method as
a pixel-based filter which is common to many image filtering meth-
ods [Rousselle et al. 2011; 2012; Li et al. 2012]. We note, however,
that our regression method can be performed directly using stored
ray samples, potentially giving better results at the expense of both
memory and computational overhead. Instead, we store only the
mean and variance for each feature type per pixel. We use those
values stored at pixels as our samples under our filtering window.
As a result, our method’s required memory and performance over-
head is independent from the number of ray samples. When we use
the GPU to perform our reconstruction method on a 1K by 1K im-
age (e.g., San Miguel), it takes about 2 s and 7 s of processing time
in intermediate stages and final stage, respectively. The main bottle-
neck of our method is in its various matrix operations. For complex
benchmarks such as the San Miguel scene, generating 128 spp takes
approximately 665 s. As a result, the overhead of our reconstruction
method takes a small portion compared to the overall rendering pro-
cess, and our method produces visually pleasing results much more
efficiently than generating more samples, because of its effective-
ness for distributing samples in high error regions. Computation
overheads of different methods can vary depending on the bench-
mark. On average our method has a 14% and 4% overhead per sam-
ple over SURE and NLM, respectively. Nonetheless, robust error
estimation and better reconstruction ability of our method results
in higher efficiency in terms of reducing errors, as demonstrated
in equal-time comparisons. When very detailed edges (e.g., hairy
objects) need to be reconstructed, pixel-based approaches guided
by geometries may miss the details especially with a relatively low
sample count. As a compromise between the sample- and pixel-
based approaches, one can directly apply our method to sub-pixels,
where a pixel is divided into multiple sub-pixels, as demonstrated
previously [Rousselle et al. 2011].

8. RESULTS AND DISCUSSIONS

For all the tests we use an Intel 17-3960X CPU machine with 3.3
GHz, and NVIDIA GeForce GTX TITAN for a CUDA implemen-
tation of our reconstruction method. We compare our method with
the state of the art adaptive rendering methods [Rousselle et al.

2012; Li et al. 2012; Kalantari and Sen 2013]. For the non-local
means (NLM) adaptive rendering [Rousselle et al. 2012], we use
the CUDA code provided by the authors. We have implemented
cross bilateral filtering based on Stein’s unbiased risk estima-
tor (SURE) as described in Li et al. [2012]. For the block-matching
and 3D filtering (BM3D) based adaptive rendering [Kalantari and
Sen 2013], we use the code provided by the authors. We uses the
parameters recommended by authors, and the numbers are reported
in our supplementary report.

As a quantitative measure for comparisons we use the relative
MSE (rMSE) [Rousselle et al. 2011] that is computed as an average

of (fun(z) — f(2))2/(f(2)% + 0.01), where 0.01 is introduced to
avoid a divide by zero.

Benchmarks. To test behaviors of all the tested methods in a vari-
ety of rendering effects we have chosen the following well-known
benchmarks: 1) San Miguel (1024 x 1024), 2) killeroo-gold (1368
% 1026), 3) dof-dragons (1500 x 636), 4) pool (1024 x 1024), and
5) conference scene (1024 x 1024). The number in each paren-
thesis denotes the image resolution used for each scene. The San
Miguel scene has complex textured geometry, and a large portion
of its image is defocused due to strong depth of field (DOF) ef-
fects. The DOF on complex geometry is a challenging benchmark
for filtering methods using geometric information, because their
corresponding G-buffers are quite noisy. In the killeroo-gold, the
killeroo model has the highly glossy gold material that makes spike
noise and strong highlights. The dof-dragons scene consists of in-
stanced multiple dragons with complex geometry, and each dragon
has very different DOF effects. In the pool scene each billiard ball
with a plastic material has a different motion that leads to differ-
ent motion blurs. The conference scene has glossy materials that
introduce a significant amount of spike noise. All the scenes are
rendered by path tracing. We have tested two more scenes, and re-
sults and comparisons with them are reported in the supplementary
report; we have observed similar trends to scenes tested in the main
body of the paper.

Comparisons. In the San Miguel scene (Fig. 9), NLM shows nu-
merous high frequency artifacts on both defocused (the first row)
and focused regions (the second row). NLM does not utilize G-
buffers (i.e., normal, depth, and textures) and thus it runs fast. It
shows, however, noisy results, when the input color information is
highly noisy. On the other hand, SURE provides a relatively bet-
ter filtering result in the focused region, where the G-buffers can
guide some edge information, but noticeable artifacts are generated
in the defocused region, where the geometry is not helpful. SURE
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(a) Ours 16 spp
(78 s) rMSE 0.00235

(b) LD 32 spp
(79 s) rMSE 0.02384

(c) N 24 spp
(79 s) rMSE 0.00417

(e) Ours 16 spp
(78 s) rMSE 0.00206

(d) SURE 22 spp
(79 s) rMSE 0.00576

Fig. 10. Equal-time comparisons in the killeroo-gold scene. The zoom-in inset visualizes highlights on the head. NLM (c) leaves noise on the head. SURE
(d) and our method (e) show visually pleasing results, but SURE gives over-blurred results.

- -

(@) Ours 16 spp (66 s) (b) LD
rMSE 0.00316

(c) NLM
39 spp (66s) 17 spp (66 s)
rMSE 0.01350 rMSE 0.00447 rMSE 0.00678 rMSE 0.00547 rMSE 0.00443 rMSE 0.00316

(d) SURE
15 spp (66 s)

(e) RPF
16 spp

(f) BM3D
16 spp 16 spp (66 s)

(g) Ours (h) Reference

64K spp

Fig. 11. Equal-time comparisons in the dof-dragons. Previous methods show either over-smoothed results or noise. Our method not only preserves the
detailed geometry, but also provides smooth results on the defocused area. Dragon model courtesy of Stanford 3D repository.

attempted to ameliorate this problem by applying prefiltering using
a cross bilateral filter to compute smooth bandwidths and a sam-
pling map. However, the prefiltering fails to smooth out some pix-
els where the geometry is highly noisy, and spike noise remains
since the energy of spike noise is not well distributed. In addi-
tion, a few null radiance pixels remained when they failed to gen-
erate more rays on the pixels. The San Miguel benchmark was also
used in a multi-dimensional reconstruction method [Lehtinen et al.
2011], but the previous work only demonstrated reducing noise
from distribution effects (e.g., depth-of-field). On the other hand,
our method removes noise from both indirect illumination and the
distribution effects simultaneously.

In the killeroo-gold scene (Fig. 10), our method preserves the
strong highlights of the head and shows the lowest MSE. The NLM
produces slightly noisy results and SURE generates over-blurred
results.

In Fig. 11, we can verify the robustness of tested methods against
DOF effects with multiple dragons that have quite different depths.
Given the dof-dragons scene we use equal-sample count (e.g., 16)
for RPF. RPF stores all the samples to identify sources of noise,
and thus its runtime overhead is much higher compared to pixel-
based approaches including ours. We also use the same sample
count for BM3D, since its filtering is a MATLAB based implemen-
tation that can be slower than the CUDA implementation used in
our method. For NLM and SURE, we conduct equal-time compar-
isons. In the defocused area (the first row), NLM and SURE show
under-blurred results on the defocused dragons and textured floor.
In the focused area (the second row), all the tested previous meth-
ods (NLM, SURE, RPF and BM3D) generate over-blurred results.
On the other hand, our method preserves detailed curvatures thanks
to our feature bandwidth selection. RPF considers the relative im-
portance of feature types like our approach, but the main advantage
of our method over RPF is error analysis based bandwidth selec-
tion and adaptive sampling. As a result, our method shows more
accurate results than RPF.

‘We have measured convergence rates of the relative MSE in the
San Miguel, killeroo-gold, dof-dragons, and pool scenes. As shown
in Fig. 12, our method consistently shows lower rMSEs across all

the ray sample counts over NLM and SURE. In the killeroo, the
rMSE reduction of SURE is poor, although their method produces
a quite smooth filtered image. Specifically, the strong highlights
on the killeroo are not preserved well, which leads to a high error.
Technically, this error is mainly from bias, and smaller bandwidths
are required for reducing the bias. Unfortunately, the bandwidth
for each feature in SURE is set as a globally fixed user parameter.
One may reduce the user parameter to reduce such bias, but it typ-
ically generates more noise on other areas. In the pool scene, our
method shows significantly lower rMSEs over the previous tech-
niques. This is mainly because our method preserves noisy textures
well, while removing MC noise thanks to the strong correlation be-
tween textures and output intensity, as shown in Fig. 2. Specifically,
the rMSE (e.g., 0.00057) of our method with 16 spp is even lower
than the rMSEs (e.g., 0.00139 and 0.00082) of NLM and SURE
with 128 spp.

Extended feature vectors. The pool scene (Fig. 1) with motion
blur effects is a challenging benchmark for filtering methods guided
by the geometry. For example, geometry buffers can be very noisy
on motion blurred regions, and it leads to over-blurred results on the
noisy textures. Since additional features can be freely included for
our method, we use two different textures buffers, each of which is
dedicated for moving or non-moving objects, to have separate tex-
ture information for these different types of objects. Specifically,
we check intersection points between primary rays and the scene,
and then determine whether the points are from moving objects or
not. In the case of moving objects, the texture buffer for moving
objects is updated based on the texture information of intersected
moving objects. For the other case of non-moving objects, the tex-
ture buffer for non-moving objects is updated.

As shown in the Fig. 1, our method with this simple extension
generates a high quality reconstruction result on the motion blurred
region with noisy textures (the second row). On the other hand, the
previous methods (NLM, SURE, and BM3D) either leave high fre-
quency noises or show over blurred results even in the noisy texture
on the floor (the first row). One may reduce the bias of SURE by
reducing the bandwidth for textures, but it typically increases noise
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Fig. 12. Convergence plots in different methods. Our method outperforms
previous methods across all the tested sample counts.

a)NLM 512spp  (b) SURE 1K spp c) Ours 32 spp d) Reference

(1064 s) (2202 s) (91s) 64K spp
rMSE 0.00047 rMSE 0.00063 rMSE 0.00044

Fig. 13. Equal-quality comparisons in the pool scene.

on the motion blurred textures of the blue ball (second row). In ad-
dition, it is clear that the noise texture in the first row cannot be
preserved by using the additional texture buffer. Our local linear
regression gives much better results on the noisy textures since the
non-linear intensity function has a strong linear correlation on tex-
ture space, as shown in Fig. 2. Specifically, our method shows 9,
3%, and 8x rMSE reduction ratios over NLM, SURE, and BM3D,
respectively.

SURE can use the additional texture buffer for the moving ob-
jects with a user-defined, global standard deviation parameter. For
two buffers we use the same parameter (i.e., 0.25) used in the orig-
inal texture buffer of SURE. Unfortunately, we found that this ex-
tension of SURE provides a numerically similar result (e.g., IMSE
=0.00129) to the one without using the extended buffer.

The extended feature is a naive one and does not fully ad-
dress more complex scenarios. For example, even within a single
pixel, multiple moving objects with different speeds can exist. Note
that our result with the extended buffer is provided for verifying
whether our method supports additional features without introduc-
ing the bandwidth selection problem for the features.

Equal-quality comparisons. We conduct equal-quality compar-
isons in the pool scene (Fig. 13). For our method, we use the ex-
tended feature buffer as described in the previous paragraph. NLM
with 512 ray samples shows a similar MSE compared to ours with

Table II. tMSE comparisons of animated results

San Miguel [ frame 50 | frame 100 | frame 150 | frame 200 ]
LD (143spp) [ 0.05433 [ 0.05127 [ 0.04894 [ 0.04934
NLM (128 spp) | 0.00814 [ 0.00845 | 0.00843 [ 0.00962
SURE (126 spp) | 0.01228 | 0.01448 | 0.01402 | 0.01548
Ours (128 spp) | 0.00525 | 0.00546 | 0.00528 [ 0.00556

32 ray samples. Even with the large number of ray samples, NLM
leaves high-frequency noise especially on the orange ball (first
row). Since NLM does not utilize geometry information, it is funda-
mentally difficult in certain regions to discern image features (e.g.,
noisy texture) from MC noise. SURE shows over-blurred results on
the noisy texture (second row). Although SURE uses geometries,
automatic bandwidth selection for the geometries is not resolved.
One may reduce the bandwidths used in SURE manually, but it
can generate noise in motion blurred regions. Because of the fixed,
global bandwidth for geometries, SURE does not preserve detailed
noisy textures. As a result, SURE with 1024 ray samples shows
a higher MSE compared to ours. In this challenging benchmark,
our method achieves more than an order of magnitude performance
improvement over the tested state-of-the-art methods.

Outliers. In rendering, outliers are often defined as spike noise with
extremely high energy. If outliers are not addressed well, sampling
budgets are drained because pixels with outliers typically have a
very large variance [Rousselle et al. 2011]. Furthermore, a recon-
struction process requires a larger window size to spread out its en-
ergy [Rousselle et al. 2012]. We use a simple heuristic to suppress
its influence, by dividing the computed weights of samples by the
variance of the sample mean. This approach works with our lo-
cal regression approach and has a negligible overhead. Nonetheless
we have observed that this simple trick produces visually pleas-
ing results. This is mainly because our method robustly measures
bias even with outliers and our reconstruction method restores en-
ergy loss of outliers, as the number of samples is increased. Note
that high bias values for pixels with outliers cause those pixels to
receive appropriate samples and thus the variance of the sample
mean tends to decrease. As a result, our reconstruction method puts
higher weights on outliers, reducing the energy loss.

Animations. Our method can naturally be extended to handle an-
imated images, since our technique selects bandwidths across an
arbitrary set of features including ones derived from the temporal
domain. To demonstrate our extension to the temporal domain, we
first generate each frame using our adaptive rendering method, and
these images can be considered as volumetric pixels. The anima-
tion directly computed from the volumetric pixels can have many
flickering artifacts unless enough samples are used for each frame.
To further reduce noise by using temporal coherence, we apply our
method again as a post-process to the volumetric pixels. Specifi-
cally, in each volumetric pixel, we apply our reconstruction with
an additional feature, a frame number ¢. The input variance of each
volumetric pixel is estimated using the variance estimation equa-
tion (Eq. 11). In our implementation, we use a 7 x 7 x 5 filtering
window to utilize both temporal and spatial coherence. Given the
filtering window size, the runtime overhead of our additional filter-
ing per frame takes 7 s for the San Miguel benchmark. Note that
all the bandwidths of features including the frame number ¢ is au-
tomatically selected in terms of minimizing MSE.

In our accompanying video, we conduct the equal-time compar-
isons with SURE and NLM. For the temporal extension of SURE,
we add an additional Gaussian function to the cross bilateral filter,
and its distance function is defined based on the difference on frame
numbers of pixels; details are included in our supplementary report.
For NLM, we extended their non-local means filtering to consider
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neighboring pixels in adjacent frames (e.g., 5 frames), as described
in their paper.

Our method shows visually pleasing animation results across all
the tested models. In some cases, our result still shows noticeable
flickering, but its level is significantly lower than those of other
tested methods. In addition, we measure rMSEs from a few regu-
larly spaced frames in the accompanied video, based on reference
images rendered by 8 K samples per pixel. As shown in Table II,
our method produces numerically more accurate filtered images
compared to all the other tested methods; rMSEs in other scenes
are included in our supplementary report.

One may prefer to apply our method directly to the volumetric
pixels. We found that it produces a slightly lower rMSE compared
to the current approach, since working directly with the volumet-
ric pixels does not produce any additional bias. Nonetheless, we
chose to use additional filtering that reapplies our reconstruction to
the images filtered by our method, mainly because the additional
filtering tends to have less flickering compared to the alternative.
Overall, the additional filtering generates an additional bias, but as
shown in Fig. 14, the introduced bias from additional filtering is not
high compared to the amount of reduced variances by the same fil-
tering. This is mainly because our additional filtering method also
optimizes for the reduction of MSE.

Limitations. As shown in the conference scene (Fig. 15), all the
tested methods do not provide satisfactory results because of the
frequent presence of spike noise. Our method is visually better
than the other methods, but still exhibits low-frequency noise. We
may lessen the problem by using a larger window size [Rousselle
et al. 2012], but this approach can introduce more bias in other
scenes. Before applying our method, outliers can be reduced in a
pre-processing step [DeCoro et al. 2010]. Estimating bias intro-
duced in the pre-processing step, however, is not trivial. Efficiently
addressing outliers without energy loss (i.e., bias) still remains a
challenging problem in adaptive rendering techniques. In addition,
our error analysis is derived by assuming that input samples sat-
isfy the independence property. When low discrepancy samples are
used, our method can overestimate variances of filtered images. The
overestimation can lead to over-blurring in our reconstruction and
overshooting of our sampling budgets, but we found that it does
not significantly lower the quality of our reconstruction; our sup-
plementary material includes more details. Furthermore, our TSVD
based pre-filtering for reducing noise contained in feature vectors
can lead to over-blurred results of detailed edges in the regions
with very noisy geometries (e.g., Fig. 1 (f)), since local dimensions
estimated by the TSVD can be underestimated especially with a
small number of ray counts. Technically, the loss in details goes
to zero as the number of samples increases, since our threshold
value 7 used in TSVD also goes to zero. Finally, our filtering tends
to generate over-blurring results in some regions (e.g., ears of the
killeroo in Fig. 10) when output intensity is nonlinear on features
and also variances of the regions are very high. Nonetheless, our
method shows visually pleasing and numerically better results over
the state-of-the-art adaptive rendering methods.

9. CONCLUSION

We have proposed a novel, weighted local regression based adap-
tive rendering technique for efficiently and robustly handling a
wide variety of rendering effects. We locally identify noisy features
based on our TSVD and perform our reconstruction with a reduced
feature space. We then parameterize the bias and variance of our
reconstruction error and find the optimal bandwidths for feature
types. We also adopt an iterative sampling process that distributes
the available ray budgets to regions with high errors according to

(a) Ours 128 spp
w/ addi. filtering
rMSE 0.00546

(b) Ours 128 spp
w/o addi. filtering
rMSE 0.00555

(c) Ours 128 spp

(d) Reference
w/ addi. filtering 8K spp
rMSE 0.00546

Fig. 14. Our results with and without running an additional filtering that
utilizes temporal coherence, given the 100th frame from the accompanying
video of the San Miguel.

our error metric. We have also demonstrated robustness and effi-
ciency of our method with a diverse set of benchmark models under
different rendering effects, and showed that our method produces a
robust and consistent improvement over the state-of-the-art tech-
niques.

Many interesting future research directions lie ahead. Robustly
handling outliers in the context of rendering continues to be a chal-
lenging problem. We plan to investigate a number of different ap-
proaches (e.g., spreading out the loss energy into the reconstructed
function) within our adaptive rendering framework in a robust way.
We would like to extend our TSVD based pre-filtering to be per-
formed by analyzing the source of noise contained in feature vec-
tors such as noisy textures or motion blur, since it may lead to a
higher reconstruction result, when the noise comes from multiple
sources simultaneously. Another interesting question is to investi-
gate fundamental differences and efficiency between our local re-
gression based image-space adaptive method and photon mapping,
since the density estimation and our local regression stem from the
same statistical assumptions. For example, Kaplanyan and Dachs-
bacher [2013] demonstrated that high quality reconstruction can be
achieved in a progressive photon mapping framework by using lo-
cal regression. Finally we would like to investigate our bandwidth
selection for a wider set of features (e.g., virtual flash images pro-
posed in [Moon et al. 2013]).
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