
CS380: Computer Graphics
2D Imaging and Transformation

Sung-Eui Yoon
(윤성의)

Course URL:
http://sgvr.kaist.ac.kr/~sungeui/CG

2

Announcements
● Lab class (video) related to OpenGL and PA

sometime before the PA1 deadline
● Check KLMS regularly

3

Tentative Schedule
● About 13 talks and zoom sessions

● Apr-17 (Wed): 13:00~15:45, mid-term exam

● About 3 talks and zoom session
● May 1, 8, 13: SOTA talks on Nerf, denoising, diffusion by

TAs

● May 20, 22, 27: Student lecture presentation and quiz
● May 29, Jul, 3, 5: Paper presentation and quiz
● Jul, 10, 12 Reserved (final exam)

4

Class Objectives
●Write down simple 2D transformation

matrixes
● Understand the homogeneous coordinates and

its benefits
● Know OpenGL-transformation related API

● Implement idle-based animation method
● Covered in 3.2 2D Transformation of my

book

● At last time:
● Viewport transformation from world spaces to

screen spaces w/ Julia set and some OpenGL

5

2D Geometric Transforms
● Functions to map

points from one place
to another

● Geometric transforms
can be applied to
● Drawing primitives

(points, lines, conics,
triangles)

● Pixel coordinates of an
image

Demo

6

Translation
● Translations have the following form:

x' = x + tx
y' = y + ty

● inverse function: undoes the translation:
x = x' - tx
y = y' - ty

● identity: leaves every point unchanged
x' = x + 0
y' = y + 0

ᇱ
ᇱ

୶
୷

7

2D Rotations
● Another group - rotation about the origin:

8

Rotations in Series
●We want to rotate the object 30 degree

and, then, 60 degree
xᇱ
yᇱ ൌ cosሺ60ሻ െ sinሺ60ሻ

sinሺ60ሻ cosሺ60ሻ
cosሺ30ሻ െ sinሺ30ሻ
sinሺ30ሻ cosሺ30ሻ

x
y

xᇱ
yᇱ ൌ cosሺ90ሻ െ sinሺ90ሻ

sinሺ90ሻ cosሺ90ሻ
x
y

We can merge
multiple rotations into

one rotation matrix

9

● Euclidean group
● Translations + rotations
● Rigid body transforms

● Properties:
● Preserve distances
● Preserve angles
● How do you represent these functions?

Euclidean Transforms

10

Problems with this Form
● Translation and rotation considered

separately
● Typically we perform a series of rotations and

translations to place objects in world space
● It’s inconvenient and inefficient in the previous

form
● Inverse transform involves multiple steps

●How can we address it?
● How can we represent the translation as a

matrix multiplication?

11

Homogeneous Coordinates
● Consider our 2D plane as a subspace within

3D

(x, y) (x, y, z)

12

Matrix Multiplications and
Homogeneous Coordinates
● Can use any planar subspace that does not contain

the origin
● Assume our 2D space lies on the 3D plane z = 1

● Now we can express all Euclidean transforms in matrix
form:

13

● S is a scaling factor

Scaling

1

y

x

s

s

y

x
'

'

100
00
00

1

14

Example: World Space to NDC

-1
w.l

1
w.r

-1
w.b

1
w.t

xn?
xwxn = Axw+ B

୬ ୵

୬
୵

A ൌ
2

w. r െ w. l , B ൌ െ
w. r w. l
w. r െ w. l

15

Example: World Space to NDC
●Now, it can be accomplished via a matrix

multiplication
● Also, conceptually simple

୬
୬

୵
୵

16

● Push things
sideways

● Shear along x-axis

● Shear along y-axis

Shearing

17

Reflection
●Reflection about x-axis

●Reflection about y-axis

18

Composition of 2D
Transformation
●Quite common to apply more than one

transformations to an object
● E.g., v2=Sv1, v3=Rv2, where S and R are scaling

and Rotation matrix
● Then, we can use the following

representation:
● v3=R(Sv1) or
● v3=(RS)v1
● why?

(associative)

19

Transformation Order
●Order of transforms is very important

● Why?

20

Affine Transformations
● Transformed points (x’, y’) have the

following form:

● Combinations of translations, rotations,
scaling, reflection, shears

● Properties
● Parallel lines are preserved
● Finite points map to finite points

ᇱ
ᇱ

ଵଵ ଵଶ ଵଷ
ଶଵ ଶଶ ଶଷ

21

Rigid-Body Transforms in
OpenGL

glTranslate (tx, ty, tz);
glRotate (angleInDegrees, axisX, axisY, axisZ);
glScale(sx, sy, sz);

OpenGL uses matrix format internally.
- glm (Ver. 4.3) stands for OpenGL Mathematics

22

OpenGL Example – Rectangle
Animation (double.c)

Demo

23

Main Display Function

void display(void)
{

glClear(GL_COLOR_BUFFER_BIT);

glPushMatrix();
glRotatef(spin, 0.0, 0.0, 1.0);
glColor3f(1.0, 1.0, 1.0);
glRectf(-25.0, -25.0, 25.0, 25.0);
glPopMatrix();

glutSwapBuffers();
}

𝑹

𝑰 : initial matrix

𝑰

𝑰

24

Frame Buffer
● Contains an image for the final visualization
● Color buffer, depth buffer, etc.

● Buffer initialization
● glClear(GL_COLOR_BUFFER_BIT);
● glClearColor (..);

● Buffer creation
● glutInitDisplayMode (GLUT_DOUBLE |

GLUT_RGB);
● Buffer swap

● glutSwapBuffers();

25

Matrix Stacks
●OpenGL maintains matrix stacks

● Provides pop and push operations
● Convenient for transformation operations

● glMatrixMode() sets the current stack
● GL_MODELVIEW, GL_PROJECTION, or

GL_TEXTURE
● glPushMatrix() and glPopMatrix() are used to

manipulate the stacks

26

OpenGL Matrix Operations
glTranslate(tx, ty, tz)

glRotate(angleInDegrees, axisX, axisY, axisZ)

glMultMatrix(*arrayOf16InColumnMajorOrder)

glLoadMatrix (*arrayOf16InColumnMajorOrder)

glLoadIdentity()

Concatenate
with the

current matrix

Overwrite the
current matrix

27

Matrix Specification in OpenGL
● Column-major ordering

● Reverse to the typical C-convention (e.g., m
[i][j] : row i & column j)

● Better to declare m [16]

● Also, glLoadTransportMatrix*() &
glMultTransposeMatrix*() are available

161284

151173

141062

13951

mmmm
mmmm
mmmm
mmmm

M

28

Animation
● It consists of “redraw” and “swap”

● It’s desirable to provide more than 30
frames per second (fps) for interactive
applications

●We will look at an animation example
based on idle-callback function

29

Idle-based Animation
void mouse(int button, int state, int x, int y)
{

switch (button) {
case GLUT_LEFT_BUTTON:

if (state == GLUT_DOWN)
glutIdleFunc (spinDisplay);

break;
case GLUT_RIGHT_BUTTON:

if (state == GLUT_DOWN)
glutIdleFunc (NULL);

break;
}

}

void spinDisplay(void)
{

spin = spin + 2.0;
if (spin > 360.0)

spin = spin - 360.0;
glutPostRedisplay();

}

Chatgpt: Animation with
callback functions can also be
used in Android applications
(OpenGL ES)
Yoon: checked w/ google
search

30

Class Objectives were:
●Write down simple 2D transformation

matrixes
●Understand the homogeneous coordinates

and its benefits
● Know OpenGL-transformation related API
● Implement idle-based animation method

31

Homework
●Go over the next lecture slides before the

class
●Watch 2 SIGGRAPH videos and submit your

summaries before every Mon. class
● Submit online
● Just one paragraph for each summary

Example:
Title: XXX XXXX XXXX
Abstract: this video is about accelerating the
performance of ray tracing. To achieve its goal, they
design a new technique for reordering rays, since by
doing so, they can improve the ray coherence and thus
improve the overall performance.

32

Any Questions?
● Come up with one question on what we

have discussed in the class and submit at
the end of the class
● 1 for already answered or typical questions
● 2 for questions with thoughts or that surprised

me

● Submit 2 times during the whole semester

33

Next Time
● 3D transformations

