CS380: Computer Graphics Modeling Transformations

Sung-Eui Yoon (윤성의)

Course URL: http://sgvr.kaist.ac.kr/~sungeui/CG/

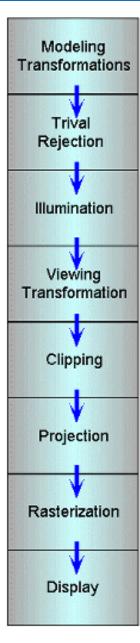
Class Objectives (Ch. 3.5)

- Know the classic data processing steps, rendering pipeline, for rendering primitives
- Understand 3D translations and rotations as parts of modeling transformation
- At the last class:
 - Diff. between points and vectors
 - Understand the frame
 - Diff. transformations in local and global frames

Outline

- Where are we going?
 - Sneak peek at the rendering pipeline
- Vector algebra
- Modeling transformation
- Viewing transformation
- Projections

The Classic Rendering Pipeline



- Object primitives defined by vertices fed in at the top
- Pixels come out in the display at the bottom
- Commonly have multiple primitives in various stages of rendering

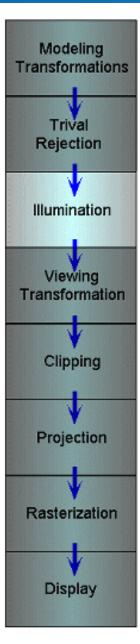
Modeling Transforms

Modeling Transformations Trival Rejection Illumination Viewing Transformation Clipping Projection Rasterization Display

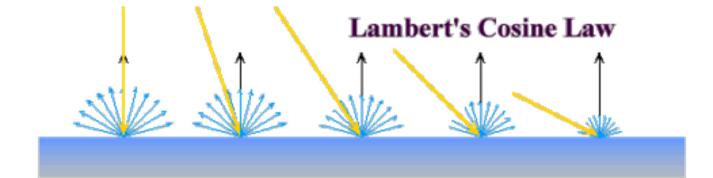
Start with 3D models defined in modeling spaces with their own modeling frames: m^t₁, m^t₂,..., m^t_n

- Modeling transformations orient models within a common coordinate frame called world space, w^t
 - All objects, light sources, and the camera live in world space
- Trivial rejection attempts to eliminate objects that cannot possibly be seen
 - An optimization

Illumination



- Illuminate potentially visible objects
- Final rendered color is determined by object's orientation, its material properties, and the light sources in the scene



Viewing Transformations

Modeling Transformations Trival Rejection Illumination Viewing Transformation Clipping Projection Rasterization Display

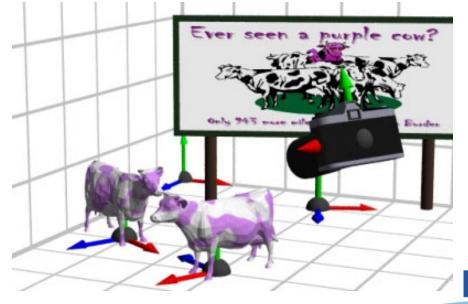
7

 Maps points from world space to eye space:

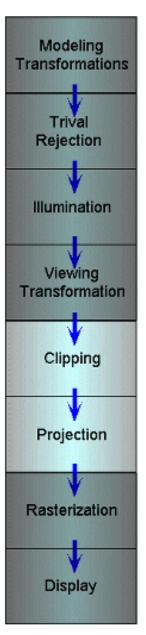
 $\dot{e}^t = \dot{w}^t V$

 Viewing position is transformed to the origin

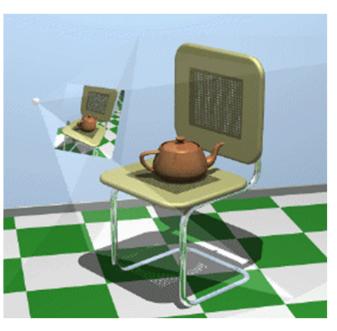
• Viewing direction is oriented along some axis



Clipping and Projection



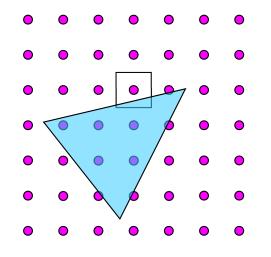
- We specify a volume called a viewing frustum
- Clip objects against the view volume, thereby eliminating geometry not visible in the image
- Project objects into two-dimensions



Rasterization and Display

Modeling Transformations Trival Rejection Illumination Viewing Transformation Clipping Projection Rasterization Display

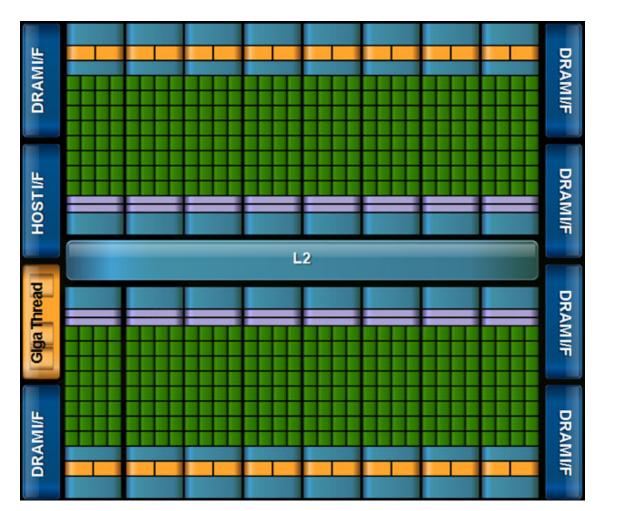
Rasterization converts objects pixels



- Almost every step in the rendering pipeline involves a change of coordinate systems!

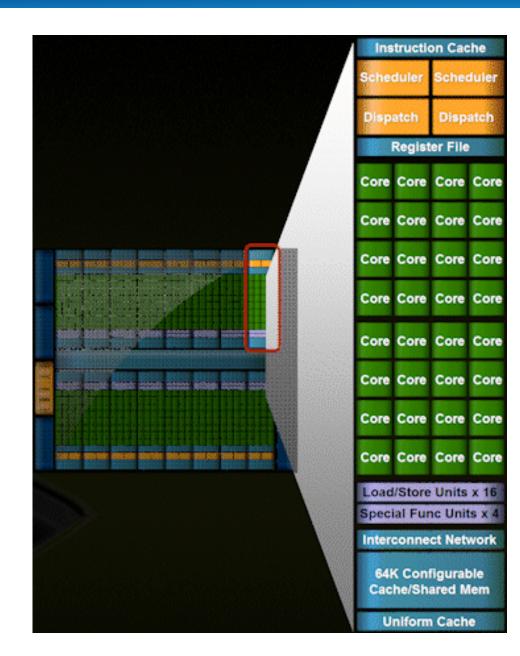
- Transformations are central to understanding 3D computer graphics

But, this is a architectural overview of a recent GPU (Fermi) around 2010



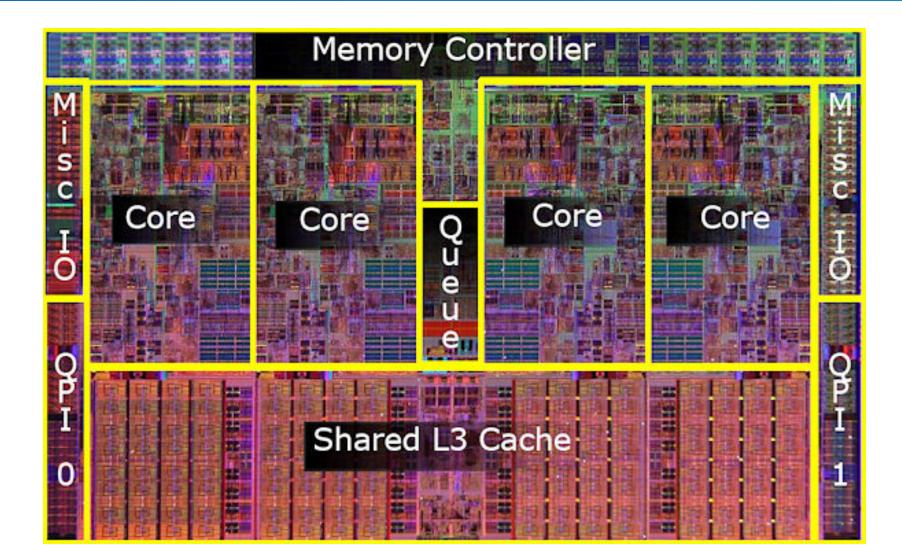
- Highly parallel
- Wide memory bandwidth
- Support CUDA (general language)

But, this is a architectural overview of a recent GPU

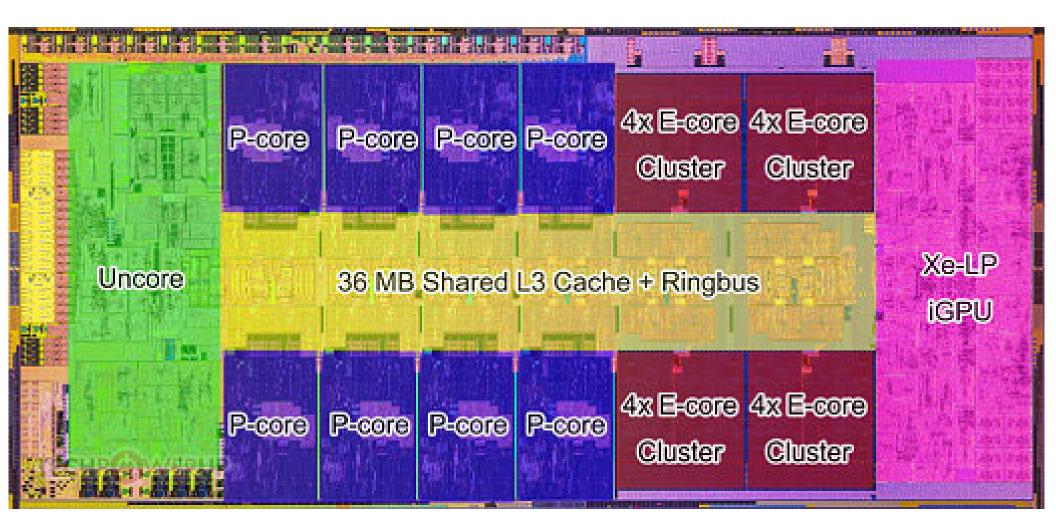


Nvidia Hopper Architecture (18K FP32 cores)

Recent CPU Chips (Intel's Core i7 processors) around 2020



Intel Core i9-13900K (USD 650 == 800 Korean won)



Vector Algebra

- Already saw vector addition and multiplications by a scalar
- Discuss two kinds of vector multiplications
 - Dot product (·)
 - Cross product (×)

- returns a scalar
- returns a vector

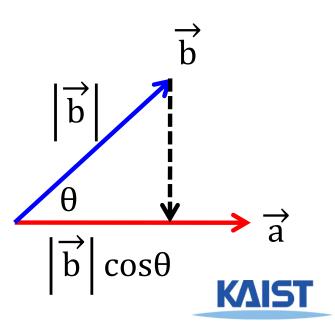
Dot Product (·)

$$\vec{a} \cdot \vec{b} \equiv \vec{a}^{\mathsf{T}} \vec{b} = \begin{bmatrix} a_x & a_y & a_z & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \\ 0 \end{bmatrix} = s, \qquad \vec{a} \cdot \vec{b} \equiv \vec{a}^{\mathsf{T}} \vec{b} = \begin{bmatrix} a_x & a_y & a_z & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \\ 1 \end{bmatrix} = s$$

Returns a scalar s

• Geometric interpretations s:

- $\vec{a} \cdot \vec{b} = |a| |b| \cos \theta$
- Length of \overrightarrow{b} projected onto and \overrightarrow{a} or vice versa
- Distance of \dot{b} from the origin in the direction of \vec{a}

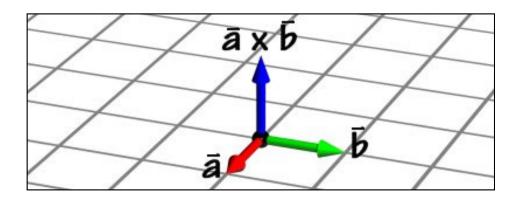


Cross Product (×)

$$\vec{a} \times \vec{b} \equiv \begin{bmatrix} 0 & -a_z & a_y & 0 \\ a_z & 0 & -a_x & 0 \\ -a_y & a_x & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \\ 0 \end{bmatrix} = \vec{c} \qquad \vec{a} \cdot \vec{c} = 0 \\ \vec{b} \cdot \vec{c} = 0$$

$$\overrightarrow{c} = [a_y b_z - a_z b_y \quad a_z b_x - a_x b_z \quad a_x b_y - a_y b_x]$$

• Return a vector \vec{c} that is perpendicular to both \vec{a} and \vec{b} , oriented according to the right-hand rule



Cross Product (×)

 A mnemonic device for remembering the cross-product

$$\vec{a} \times \vec{b} = det \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{bmatrix}$$
$$= (a_y b_z - a_z b_y)\vec{i} + (a_z b_x - a_x b_z)\vec{j} + (a_x b_y - a_y b_x)\vec{k}$$
$$\vec{i} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$
$$\vec{j} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$
$$\vec{k} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

Modeling Transformations

- Vast majority of transformations are modeling transforms
- Generally fall into one of two classes
 - Transforms that move parts within the model

$$\dot{m}_1^t \mathbf{c} \Rightarrow \dot{m}_1^t \mathbf{M} \mathbf{c} = \dot{m}_1^t \mathbf{c}'$$

 Transforms that relate a local model's frame to the scene's world frame

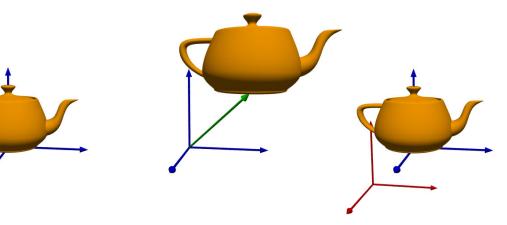
$$\dot{m}_1^t \mathbf{c} \Rightarrow \dot{m}_1^t \mathbf{M} \mathbf{c} = \dot{w}^t \mathbf{c}$$

Translations

Translate points by adding offsets to their coordinates

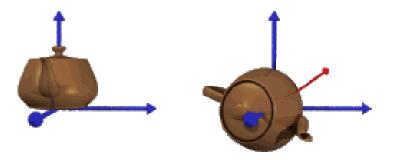
 [1 0 0 t]

• The effect of this translation:



3D Rotations

- More complicated than 2D rotations
 - Rotate objects along a rotation axis



- Several approaches
 - Compose three canonical rotations about the axes
 - Quaternions

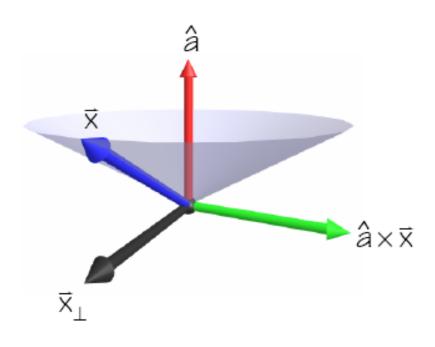
Geometry of a Rotation

Natural basis for rotation of a vector about a specified axis:

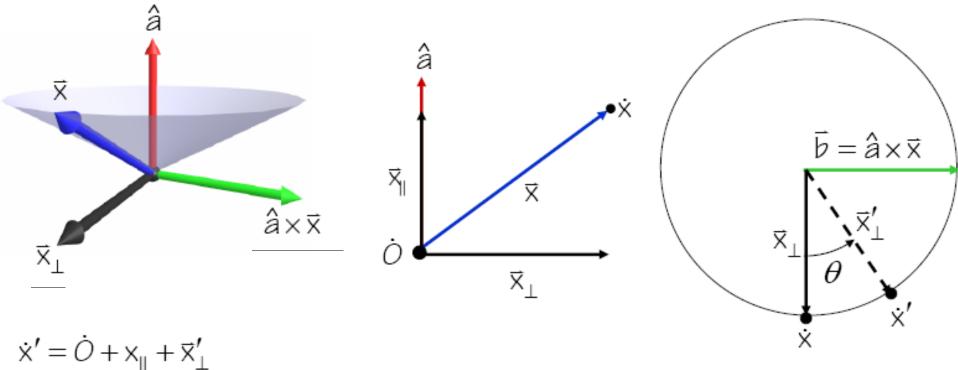
- à rotation axis (normalized)
- ° â x x vector perpendicular to

0

° \vec{x}_{\perp} - perpendicular component of \vec{x} relative to \hat{a}



Geometry of a Rotation



 $\vec{x} = O + \vec{x}_{\parallel} + \vec{x}_{\perp}$ $\vec{x}_{\perp} = \cos\theta \vec{x}_{\perp} + \sin\theta \vec{b}$ $\vec{x}_{\parallel} = \hat{a}(\hat{a} \cdot \vec{x})$ $\vec{x}_{\parallel} = \hat{a}(\hat{a} \cdot \vec{x})$ $\vec{x}_{\perp} = \vec{x} - \vec{x}_{\parallel}$ $\vec{x}_{\perp} = diag(\dot{O}) + \cos\theta diag([1 \ 1 \ 1 \ O]^{t})$ $+ (1 - \cos\theta) \vec{A}_{\otimes} + \sin\theta \vec{A}_{\times}$

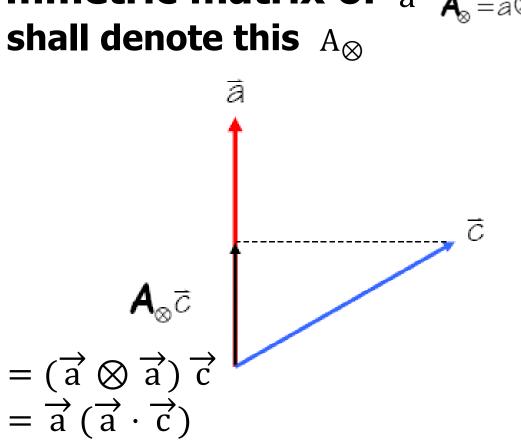
Tensor Product (\otimes)

$$\vec{a} \otimes \vec{b} \equiv \vec{a} \vec{b}^{\dagger} = \begin{bmatrix} a_{x} \\ a_{y} \\ a_{z} \\ O \end{bmatrix} \begin{bmatrix} b_{x} & b_{y} & b_{z} & O \end{bmatrix} = \begin{bmatrix} a_{x}b_{x} & a_{x}b_{y} & a_{x}b_{z} & O \\ a_{y}b_{x} & a_{y}b_{y} & a_{y}b_{z} & O \\ a_{z}b_{x} & a_{z}b_{y} & a_{z}b_{z} & O \\ O & O & O & O \end{bmatrix}$$
$$(\vec{a} \otimes \vec{b})\vec{c} = \begin{bmatrix} (b_{x}c_{x} + b_{y}c_{y} + b_{z}c_{z})a_{x} \\ (b_{x}c_{x} + b_{y}c_{y} + b_{z}c_{z})a_{y} \\ (b_{x}c_{x} + b_{y}c_{y} + b_{z}c_{z})a_{z} \end{bmatrix} = \vec{a}(\vec{b}\cdot\vec{c})$$

• Creates a matrix that when applied to a vector \vec{c} return \vec{a} scaled by the project of \vec{c} onto \vec{b}

Tensor Product (\otimes)

- Useful when $\vec{b} = \vec{a}$
- The matrix $\vec{a} \otimes \vec{a}$ is called the symmetric matrix of \vec{a} We shall denote this A_{\otimes}



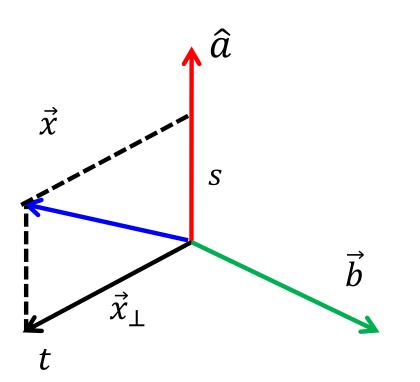
Sanity Check

Consider a rotation by about the x-axis

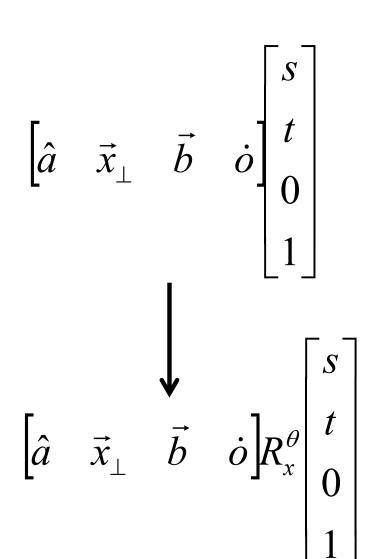
 $= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

You can check it in any computer graphics book, but you don't need to memorize it

Rotation using Affine Transformation



Assume that these basis vectors are normalized



Quaternion

• Developed by W. Hamilton in 1843

- Based on complex numbers
- Two popular notations for a quaternion, q

V

- w + xi + yj + zk, where $i^2 = j^2 = k^2 = ijk = -1$
- [w, v], where w is a scalar and v is a vector

Conversion from the axis, v, and angle, t

- q = [cos (t/2), sin (t/2) v]
- Can represent rotation
- Example: rotate by degree a along x axis:
 q_x = [cos (a/2), sin(a/2) (1, 0, 0)]

Basic Quaternion Operations

- Addition
 - q + q' = [w + w', v + v']
- Multiplication
 - qq' = [ww' v · v', v x v' + wv' + w'v]
- Conjugate
 - q* = [w, -v]
- Norm
 - $N(q) = w^2 + x^2 + y^2 + z^2$
- Inverse
 - q⁻¹ = q* / N(q)

Basic Quaternion Operations

- q is a unit quaternion if N(q)= 1
 - Then $q^{-1} = q^*$

Identity

- [1, (0, 0, 0)] for multiplication
- [0, (0, 0, 0)] for addition

Rotations using Quaternions

- Suppose that you want to rotate a vector/point v with q
- Then, the rotated v'
 - v' = q r q⁻¹, where r = [0, v])

Compositing rotations

 R = R2 R1 (rotation R1 followed by rotation R2)

Quaternion to Rotation Matrix

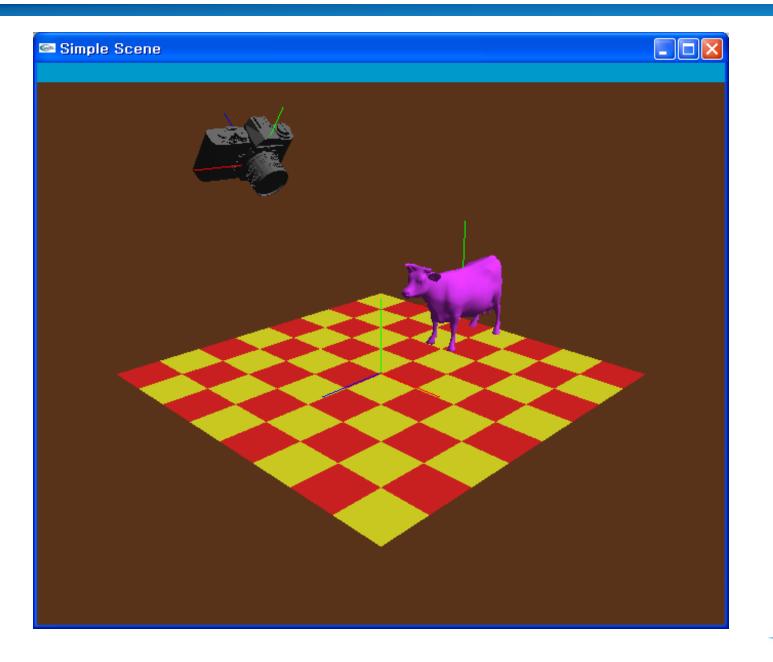
• Q = w + xi + yj + zk
• R_m =
$$\begin{vmatrix} 1-2y^2-2z^2 & 2xy-2wz & 2xz+2wy \\ 2xy+2wz & 1-2x^2-2z^2 & 2yz-2wx \\ 2xz-2wy & 2yz+2wx & 1-2x^2-2y^2 \end{vmatrix}$$

 We can also convert a rotation matrix to a quaternion

Advantage of Quaternions

- More efficient and readable way to generate arbitrary rotations
 - Less storage than 4 x 4 matrix
- Numerically more stable than 4x4 matrix (e.g., no drifting issue)
 - Easier for smooth rotation

PA2: Simple Animation & Transformation



OpenGL: Display Lists

Display lists

- A group of OpenGL commands stored for later executions
- Can be optimized in the graphics hardware
- Thus, can show higher performance
- Ver. 4.3: Vertex Array Object is much better

• Immediate mode

Causes commands to be executed immediately

An Example

```
void drawCow()
{
    if (frame == 0)
    {
        cow = new WaveFrontOBJ( "cow.obj" );
        cowID = glGenLists(1);
        glNewList(cowID, GL_COMPILE);
        cow->Draw();
        glEndList();
    }
```

```
glCallList(cowID);
```


API for Display Lists

Gluint glGenLists (range)

- generate a continuous set of empty display lists

void glNewList (list, mode) & glEndList () : specify the beginning and end of a display list

void glCallLists (list) : execute the specified display list


```
void createTriangle() {
                                                  void renderScene() {
  // Define vertices of the triangle
                                                    // Clear the color buffer
  float vertices[] = {
                                                    glClear(GL COLOR BUFFER BIT);
    -0.5f, -0.5f, 0.0f, // Bottom-left
     0.5f, -0.5f, 0.0f, // Bottom-right
                                                    // Use the shader program
     0.0f, 0.5f, 0.0f // Top };
                                                    glUseProgram(shaderProgram);
  // Generate VBO and VAO
                                                    // Bind the VAO
  glGenVertexArrays(1, &VAO);
                                                    glBindVertexArray(VAO);
  glGenBuffers(1, &VBO);
                                                    // Draw the triangle
  // Bind VAO
                                                    glDrawArrays(GL TRIANGLES, 0, 3);
  glBindVertexArray(VAO);
                                                    // Unbind the VAO
  // Bind VBO and set vertex data
                                                    glBindVertexArray(0);
  glBindBuffer(GL_ARRAY_BUFFER, VBO);
  glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices,
GL_STATIC_DRAW);
  // Specify vertex attribute pointers
  glVertexAttribPointer(0, 3, GL FLOAT, GL FALSE, 3 *
```

sizeof(float), (void*)0);

glEnableVertexAttribArray(0);

```
// Unbind VBO and VAO
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
3<sup>38</sup>
```

Some corresponding recent codes

OpenGL: Getting Information from OpenGL

```
void main( int argc, char* argv[] )
Ł
 int rv,gv,bv;
 glGetIntegerv(GL_RED_BITS,&rv);
 glGetIntegerv(GL_GREEN_BITS,&gv);
 glGetIntegerv(GL_BLUE_BITS,&bv);
 printf( "Pixel colors = %d : %d : %d\n", rv, gv, bv );
void display () {
.
glGetDoublev(GL_MODELVIEW_MATRIX, cow2wld.matrix());
- -
```


Class Objectives (Ch. 3.5) were:

- Know the classic data processing steps, rendering pipeline, for rendering primitives
- Understand 3D translations and rotations as parts of modeling transformation

Homework

- Watch SIGGRAPH Videos
- Go over the next lecture slides
- Try to come up with a question

Next Time

Viewing transformations

