CS380: Computer Graphics
Viewing Transformation

Sung-Eui Yoon
(242

Course URL.:
http://sgvr.kaist.ac.kr/~sungeui/CG/

KAIST

Class Objectives

e Know camera setup parameters

e Understand viewing and projection
processes

e Related to Ch. 4: Camera Setting

KAIST

Viewing Transformations

e Map points from world spaces to eye
space

e Can be composed from rotations and
translations

Ever seer a3 purple con? \.r'iing
~ Transformation

Viewing Transformations

e Goal: specify position and orientation of our
camera

e Defines a coordinate frame for eye space

KAIST

“Framing” the Picture

e A new camera coordinate
e Camera position at the origin
e Z-axis aligned with the view direction
e Y-axis aligned with the up direction

e More natural to think of camera as an
object positioned in the world frame

KAIST

Viewing Steps

e Rotate to align the two coordinate frames
and, then, translate to move world space
origin to camera’s origin

y f‘,’: "E@-‘”ﬁ: Ol Iy iy Ty
AN TG G QT B
i YA SR A T
rt‘!):"ﬁ - ' 3 o 3 L_z}"\
¥, >3 . e

e 1)
'ﬂ!{"{t' 1'*

e
Tgsr”

An Intuitive Specification

e Specify three quantities:
e Eye point (e) - position of the camera
e Look-at point (p) - center of the image
e Up-vector (U,) - will be oriented upwards in
the image

KAIST

Deriving the Viewing
Transformation

e First compute the look-at vector and

-

normalize . T
l=p—ce 1=?

e Compute right vector and normalize
e Perpendicular to the look-at and up vectors

-

)
r U

? - TX 1_l>a /1'\' = ==
7] | j
e Compute up vector e ‘\

e U, is only approximate direction | p
e Perpendicular to right and look-at vectors

i=7fx1

KAIST

Rotation Component

e Map our vectors to the cartesian coordinate axes

1 0 O
0 1 0

0 0 1

=[’I\‘ u —T]RV

e To compute R, we invert the matrix on the right

e This matrix M is orthonormal (or orthogonal) — its rows are
orthonormal basis vectors: vectors mutually orthogonal
and of unit length

e Then, M1 =MT
e So,

e
<
|
Cgr D

0 o KAIST

Translation Component

e The rotation that we just derived is specified about
the eye point in world space

e Need to translate all world-space coordinates so that the
eye point is at the origin

e Composing these transformations gives our viewing

transform, v wt = é'R,T_,
;i F F 01 00 —e | [; _fee]
V=RT_ _ MA),C\ 12{ 12’\ 00 1 O —ey _ 1 —12;
-l =1, =L 00 0 1 -—e _] [-e
0 o0 OO 10 0 0 1| (00 0 1

Transform a world-space point into a point in the eye-space

11

Viewing Transform in OpenGL

e OpenGL utility (glu) library provides a
viewing transformation function:

(C

C

ou
ou

C

ou

D
D

D

e eyex, double eyey, double eyez,
e centerx, double centery, double centerz,

e upx, double upy, double upz)

e Computes the same transformation that we
derived and composes it with the current matrix

Same to gim::gtc::matrix_transform::lookAt (..)
Some tutorial: https://learnopengl.com/Getting-
started/Camera

KAIST

https://learnopengl.com/Getting-started/Camera

Examgle in the Skeleton Codes
of PA

void setCamera ()
{...
/] initialize camera frame transforms
for (i=0; i < cameraCount; i++)
{
double* ¢ = camerasJi];
wld2cam.push_back(FrameXform());
glPushMatrix();
glLoadldentity();
gluLookAt(c[0],c[1],c[2], c[3],c[4],c[5], c[6],c[7],c[8]);
glGetDoublev(GL_MODELVIEW_MATRIX, wid2cam[i].matrix());
glPopMatrix();
cam2wld.push_back(wld2cam[i].inverse());

12 KAIST

13

Projections

e Map 3D points in eye space to 2D p

Image space

e Two common methods
e Orthographic projection
e Perspective projection

KAIST

14

Orthographic Projection

e Projects points along lines parallel to z-axis
e Also called parallel projection

e Used for top and side views in drafting and
modeling applications

e Appears unnatural due to lack of
perspective foreshortening

Notice that the parallel lines
of the tiled floor remain
parallel after orthographic
projection!

15

Orthographic Projection

e The projection matrix for orthographic projection

Is very simple

X' 1 00 Ox
y'l |10 1.0 0|y
2| |0 0 0 0fz
1] [0 0 O 1] 1]

e Next step is to convert points to NDC

KAIST

View Volume and Normalized
Device Coordinates

e Define a view volume

e Compose projection with a scale and a
translation that maps eye coordinates to
normalized device coordinates

1 I
l : : |
fop r‘—-____x__\‘ o =% 5N A SN 0N 5 . . ?
| 4% —] i" |
t i i 5 H..,, -
'.- -' ! EI - _.r' }
, | B |
.-’:ruf.frmr. . ~far | |
I I
P L ——near Normalized Device Coordinates

16 right _NIST

Orthographic Projections to NDC

_;U,- ‘% 0 0 _szl; 7 _Q’;-
, 9 —(t+b ,
Il=] 0 e X ngf AR
Al 0 0 f—n f—n i
| 0 0 0 1| LA
Some sanity checks:
21 r—+ r—1
/
l p— e = — p— —1

(1) r—1_1 r—I r—1

17

o
d}/

Scale the z
coordinate in exactly
the same way
-Technically, this
coordinate is not
part of the
projection. But, we
will use this value of
z for other purposes

KAIST

Orthographic Projection in
OpenGL

e This matrix is constructed by the following
OpenGL call:

void glOrtho(double left, double right,
double bottom, double top,
double near, double far);

Same to glm::gtc::matrix_transform::ortho (..)

18 KAIST

Perspective Projection

e Artists (Donatello, Brunelleschi, Durer, and Da Vinci) during
the renaissance discovered the importance of perspective for
making images appear realistic

e Perspective causes objects nearer to the viewer to appear
larger than the same object would appear farther away

e Homogenous coordlnates allow perspectlve pro;ectlons using
linear operators = oF

19

20

Signs of Perspective

e Lines In projective space always intersect
at a point

KAIST

Perspective Projection for a
Pinhole Camera

Image sensor View plane p
plane

G
©

21 KAIST

Perspective Projection Matrix

e The simplest transform for perspective
projection is: -

'

wX 1 0 0 Ox
wy' 0O 1 0 Ofy
wz'| {0 0 0 0f:z
wl |00 1 01

e We divide by w to make the fourth
coordinate 1

e In this example, w = z
e Therefore, xX'=x/2z, vy'=y/2z,2’=0

22 KAIST

Normalized Perspective

e As in the orthographic case, we map to
normalized device coordinates

23 KAIST

24

NDC Perspective Matrix

WX ||
wy'’ 0
wz'| | 0
| W 0

0 —(right-+left)
right—left
2.near —(top+bottom)
top—bottom top—bottom
0 far+near
far—near
0 1

—2-far-near

0
0

far—near

0

= N < X

e The values of left, right, top, and bottom are specified at the
near depth. Let’s try some sanity checks:

= X =

X = left ,
= X =

Z=nhear

X = right

Z=nhear

2-nearleft near(right +left)

right —left right —left _ —near _ 1
— near —
near
2-nearright near(right +left)
right —left right —left _ near __ 1
" near
near

KAIST

NDC Perspective Matrix

—(right-+left)

wx'’ ris;::e_?;ft 0 right—left 0 X
wy'| | 0 B eeon 0 |V
wz'| | 0 0 el vl I
w || 0 0 1 o |1

e The values of left, right, top, and bottom are specified at the
near depth. Let’s try some sanity checks:

far+near —2-far-near
fa r _|_ far (far —near)
_ r__ far—near far—near ~ far-near __
z=far = 7z = P e —
far +near —2-far-near
near _|_ near(near—far)
. r far—near far-near _ ~farnear _
Z=near=z = ear e — 1

KAIST

25

26

Perspective in OpenGL

e OpenGL provides the following function to define
perspective transformations:

void glFrustum(double /eft, double right,
double bottom, double top,
double near, double far);

e Some think that using glFrustum() is nonintuitive.
So OpenGL provides a function with simpler, but
less general capabilities

void gluPerspective(double vertfov, double aspect,
double near, double far);

KAIST

27

gluPerspective()

-aspect * near * tan(vert fov/2)

~ aspect * near * tan(vert fov/2) Simple “Camera-
T~ Pl
EH::E::H near * tan(vert fov/2) I ! ke m Od el
T Can only specify
NelNNNNAY symmetric
NGpNRARN frustums
~L T
.‘“J'q"""'h
~_near * tan(vert fov/2)

e Substituting the extents into glFrustum()

KAIST

Examgle in the Skeleton Codes
of PA

void reshape(int w, int h)

{
width = w; height = h;
glViewport(0, 0, width, height);

glMatrixMode(GL_PROJECTION); Il Select The Projection Matrix
glLoadldentity(); I/l Reset The Projection Matrix

/I Define perspective projection frustum

double aspect = width/double(height);

gluPerspective(45, aspect, 1, 1024);
glMatrixMode(GL_MODELVIEW); Il Select The Modelview Matrix

glLoadldentity(); I/l Reset The Projection Matrix

29 KAIST

30

Class Objectives were:

e Know camera setup parameters

e Understand viewing and projection
processes

KAIST

31

Homework

e Watch SIGGRAPH Videos
e Go over the next lecture slides

KAIST

32

(Optional) PA3

e PA2: perform the transformation at the modeling
space

e PA3: perform the transformation at the viewing
space
KAIST

33

Next Time

e Interaction

KAIST

	Slide Number 1
	Class Objectives
	Viewing Transformations
	Viewing Transformations
	“Framing” the Picture
	Viewing Steps
	An Intuitive Specification
	Deriving the Viewing Transformation
	Rotation Component
	Translation Component
	Viewing Transform in OpenGL
	Example in the Skeleton Codes of PA2
	Projections
	Orthographic Projection
	Orthographic Projection
	View Volume and Normalized Device Coordinates
	Orthographic Projections to NDC
	Orthographic Projection in OpenGL
	Perspective Projection
	Signs of Perspective
	Perspective Projection for a Pinhole Camera
	Perspective Projection Matrix
	Normalized Perspective
	NDC Perspective Matrix
	NDC Perspective Matrix
	Perspective in OpenGL
	gluPerspective()
	Example in the Skeleton Codes of PA2
	Class Objectives were:
	Homework
	(Optional) PA3
	Next Time

