CS380: Computer Graphics
Viewing Transformation

Sung-Eui Yoon
(242

Course URL.:
http://sgvr.kaist.ac.kr/~sungeui/CG/

KAIST



Class Objectives

e Know camera setup parameters

e Understand viewing and projection
processes

e Related to Ch. 4: Camera Setting
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Viewing Transformations

e Map points from world spaces to eye
space

e Can be composed from rotations and
translations

Ever seer a3 purple con? \.r'iing
~ Transformation




Viewing Transformations

e Goal: specify position and orientation of our
camera

e Defines a coordinate frame for eye space

KAIST



“Framing” the Picture

e A new camera coordinate
e Camera position at the origin
e Z-axis aligned with the view direction
e Y-axis aligned with the up direction

e More natural to think of camera as an
object positioned in the world frame
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Viewing Steps

e Rotate to align the two coordinate frames
and, then, translate to move world space
origin to camera’s origin
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An Intuitive Specification

e Specify three quantities:
e Eye point (e) - position of the camera
e Look-at point (p) - center of the image
e Up-vector (U,) - will be oriented upwards in
the image
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Deriving the Viewing
Transformation

e First compute the look-at vector and

-

normalize . T
l=p—ce 1=?

e Compute right vector and normalize
e Perpendicular to the look-at and up vectors
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e U, is only approximate direction | p
e Perpendicular to right and look-at vectors
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Rotation Component

e Map our vectors to the cartesian coordinate axes
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e To compute R, we invert the matrix on the right

e This matrix M is orthonormal (or orthogonal) — its rows are
orthonormal basis vectors: vectors mutually orthogonal
and of unit length

e Then, M1 =MT
e So,
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Translation Component

e The rotation that we just derived is specified about
the eye point in world space

e Need to translate all world-space coordinates so that the
eye point is at the origin

e Composing these transformations gives our viewing

transform, v wt = é'R,T_,
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Transform a world-space point into a point in the eye-space
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Viewing Transform in OpenGL

e OpenGL utility (glu) library provides a
viewing transformation function:
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e eyex, double eyey, double eyez,
e centerx, double centery, double centerz,

e upx, double upy, double upz)

e Computes the same transformation that we
derived and composes it with the current matrix

Same to gim::gtc::matrix_transform::lookAt (..)
Some tutorial: https://learnopengl.com/Getting-
started/Camera
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https://learnopengl.com/Getting-started/Camera

Examgle in the Skeleton Codes
of PA

void setCamera ()
{...
/] initialize camera frame transforms
for (i=0; i < cameraCount; i++)
{
double* ¢ = camerasJi];
wld2cam.push_back(FrameXform());
glPushMatrix();
glLoadldentity();
gluLookAt(c[0],c[1],c[2], c[3],c[4],c[5], c[6],c[7],c[8]);
glGetDoublev( GL_MODELVIEW_MATRIX, wid2cam[i].matrix() );
glPopMatrix();
cam2wld.push_back(wld2cam[i].inverse());
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Projections

e Map 3D points in eye space to 2D p

Image space

e Two common methods
e Orthographic projection
e Perspective projection
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Orthographic Projection

e Projects points along lines parallel to z-axis
e Also called parallel projection

e Used for top and side views in drafting and
modeling applications

e Appears unnatural due to lack of
perspective foreshortening

Notice that the parallel lines
of the tiled floor remain
parallel after orthographic
projection!
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Orthographic Projection

e The projection matrix for orthographic projection

Is very simple

X' 1 00 Ox
y'l |10 1.0 0|y
2| |0 0 0 0fz
1] [0 0 O 1] 1]

e Next step is to convert points to NDC
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View Volume and Normalized
Device Coordinates

e Define a view volume

e Compose projection with a scale and a
translation that maps eye coordinates to
normalized device coordinates
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Orthographic Projections to NDC
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Scale the z
coordinate in exactly
the same way
-Technically, this
coordinate is not
part of the
projection. But, we
will use this value of
z for other purposes
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Orthographic Projection in
OpenGL

e This matrix is constructed by the following
OpenGL call:

void glOrtho(double left, double right,
double bottom, double top,
double near, double far );

Same to glm::gtc::matrix_transform::ortho (..)
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Perspective Projection

e Artists (Donatello, Brunelleschi, Durer, and Da Vinci) during
the renaissance discovered the importance of perspective for
making images appear realistic

e Perspective causes objects nearer to the viewer to appear
larger than the same object would appear farther away

e Homogenous coordlnates allow perspectlve pro;ectlons using
linear operators = oF
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Signs of Perspective

e Lines In projective space always intersect
at a point
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Perspective Projection for a
Pinhole Camera

Image sensor View plane p
plane

G
©
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Perspective Projection Matrix

e The simplest transform for perspective
projection is: -

'

wX 1 0 0 Ox
wy' 0O 1 0 Ofy
wz'| {0 0 0 0f:z
wl |00 1 01

e We divide by w to make the fourth
coordinate 1

e In this example, w = z
e Therefore, xX'=x/2z, vy'=y/2z,2’=0
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Normalized Perspective

e As in the orthographic case, we map to
normalized device coordinates
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NDC Perspective Matrix

WX ||
wy'’ 0
wz'| | 0
| W 0

0 —(right-+left)
right—left
2.near —(top+bottom)
top—bottom top—bottom
0 far+near
far—near
0 1

—2-far-near

0
0

far—near

0

= N < X

e The values of left, right, top, and bottom are specified at the
near depth. Let’s try some sanity checks:

= X =

X = left ,
= X =

Z=nhear

X = right

Z=nhear

2-nearleft near(right +left )

right —left right —left _ —near _ 1
— near —
near
2-nearright  near(right +left )
right —left right —left _ near __ 1
" near
near
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NDC Perspective Matrix

—(right-+left)

wx'’ ris;::e_?;ft 0 right—left 0 X
wy'| | 0 B eeon 0 |V
wz'| | 0 0 el vl I
w || 0 0 1 o |1

e The values of left, right, top, and bottom are specified at the
near depth. Let’s try some sanity checks:

far+near —2-far-near
fa r _|_ far (far —near)
_ r__ far—near far—near ~ far-near  __
z=far = 7z = P e —
far +near —2-far-near
near _|_ near(near—far)
. r far—near far-near _ ~farnear  _
Z=near=z = ear e — 1
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Perspective in OpenGL

e OpenGL provides the following function to define
perspective transformations:

void glFrustum(double /eft, double right,
double bottom, double top,
double near, double far);

e Some think that using glFrustum( ) is nonintuitive.
So OpenGL provides a function with simpler, but
less general capabilities

void gluPerspective(double vertfov, double aspect,
double near, double far);
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gluPerspective()

-aspect * near * tan(vert fov/2)

~ aspect * near * tan(vert fov/2) Simple “Camera-
T~ Pl
EH::E::H near * tan(vert fov/2) I ! ke m Od el
T Can only specify
NelNNNNAY symmetric
NGpNRARN frustums
~L T
.‘“J'q"""'h
~_near * tan(vert fov/2)

e Substituting the extents into glFrustum()
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Examgle in the Skeleton Codes
of PA

void reshape( int w, int h)

{
width = w; height = h;
glViewport(0, 0, width, height);

glMatrixMode(GL_PROJECTION); Il Select The Projection Matrix
glLoadldentity(); I/l Reset The Projection Matrix

/I Define perspective projection frustum

double aspect = width/double(height);

gluPerspective(45, aspect, 1, 1024);
glMatrixMode(GL_MODELVIEW); Il Select The Modelview Matrix

glLoadldentity(); I/l Reset The Projection Matrix
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Class Objectives were:

e Know camera setup parameters

e Understand viewing and projection
processes

KAIST



31

Homework

e Watch SIGGRAPH Videos
e Go over the next lecture slides

KAIST



32

(Optional) PA3

e PA2: perform the transformation at the modeling
space

e PA3: perform the transformation at the viewing
space
KAIST
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Next Time

e Interaction
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