
CS380: Computer Graphics
Viewing Transformation

Sung-Eui Yoon
(윤성의)

Course URL:
http://sgvr.kaist.ac.kr/~sungeui/CG/

2

Class Objectives
● Know camera setup parameters
●Understand viewing and projection

processes

●Related to Ch. 4: Camera Setting

3

Viewing Transformations
●Map points from world spaces to eye

space
● Can be composed from rotations and

translations

4

●Goal: specify position and orientation of our
camera
● Defines a coordinate frame for eye space

Viewing Transformations

5

“Framing” the Picture
● A new camera coordinate

● Camera position at the origin
● Z-axis aligned with the view direction
● Y-axis aligned with the up direction

●More natural to think of camera as an
object positioned in the world frame

6

Viewing Steps
●Rotate to align the two coordinate frames

and, then, translate to move world space
origin to camera’s origin

7

An Intuitive Specification
● Specify three quantities:

● Eye point (e) - position of the camera
● Look-at point (p) - center of the image
● Up-vector () - will be oriented upwards in

the image
au


8

Deriving the Viewing
Transformation
● First compute the look-at vector and

normalize

● Compute right vector and normalize
● Perpendicular to the look-at and up vectors

● Compute up vector
● is only approximate direction
● Perpendicular to right and look-at vectors

l⃗ = p − e l̂ =
l⃗

l⃗

r⃗ = l⃗ × ua �r =
r⃗
r⃗

au


�u = �r × l̂

9

Rotation Component
● Map our vectors to the cartesian coordinate axes

● To compute we invert the matrix on the right
● This matrix M is orthonormal (or orthogonal) – its rows are

orthonormal basis vectors: vectors mutually orthogonal
and of unit length

● Then,
● So,

1 0 0
0 1 0
0 0 1

= �r �u −l̂ Rv

Rv

M−1 = MT

𝐑𝐑𝑣𝑣 =
�rt
�ut
−l̂t

10

Translation Component
● The rotation that we just derived is specified about

the eye point in world space
● Need to translate all world-space coordinates so that the

eye point is at the origin
● Composing these transformations gives our viewing

transform, V 𝑤̇𝑤𝑡𝑡 = 𝑒̇𝑒𝑡𝑡𝐑𝐑𝑣𝑣𝐓𝐓−𝑒̇𝑒



















⋅
⋅−
⋅−

−
=



















−
−
−



















−−−
== −

1000
ˆ
ˆ
ˆ

ˆ
ˆ
ˆ

1000
100
010
001

1000
0ˆˆˆ
0ˆˆˆ
0ˆˆˆ

el
eu
er

l
u
r

e
e
e

lll
uuu
rrr

z

y

x

zyx

zyx

zyx

ev TRV

Transform a world-space point into a point in the eye-space

11

Viewing Transform in OpenGL
●OpenGL utility (glu) library provides a

viewing transformation function:

gluLookAt (double eyex, double eyey, double eyez,
double centerx, double centery, double centerz,
double upx, double upy, double upz)

● Computes the same transformation that we
derived and composes it with the current matrix

Same to glm::gtc::matrix_transform::lookAt (..)
Some tutorial: https://learnopengl.com/Getting-
started/Camera

https://learnopengl.com/Getting-started/Camera

12

Example in the Skeleton Codes
of PA2
void setCamera ()
{ …
// initialize camera frame transforms

for (i=0; i < cameraCount; i++)
{
double* c = cameras[i];
wld2cam.push_back(FrameXform());
glPushMatrix();
glLoadIdentity();
gluLookAt(c[0],c[1],c[2], c[3],c[4],c[5], c[6],c[7],c[8]);
glGetDoublev(GL_MODELVIEW_MATRIX, wld2cam[i].matrix());
glPopMatrix();
cam2wld.push_back(wld2cam[i].inverse());

}
….
}

13

Projections
●Map 3D points in eye space to 2D points in

image space

● Two common methods
● Orthographic projection
● Perspective projection

14

Orthographic Projection
● Projects points along lines parallel to z-axis

● Also called parallel projection
● Used for top and side views in drafting and

modeling applications
● Appears unnatural due to lack of

perspective foreshortening

Notice that the parallel lines
of the tiled floor remain

parallel after orthographic
projection!

15

Orthographic Projection
● The projection matrix for orthographic projection

is very simple

● Next step is to convert points to NDC





































=



















′
′
′

1

z

y

x

1000

0000

0010

0001

1

z

y

x

16

View Volume and Normalized
Device Coordinates
●Define a view volume
● Compose projection with a scale and a

translation that maps eye coordinates to
normalized device coordinates

17

Orthographic Projections to NDC

Some sanity checks:

Scale the z
coordinate in exactly
the same way
.Technically, this
coordinate is not
part of the
projection. But, we
will use this value of
z for other purposes

18

Orthographic Projection in
OpenGL
● This matrix is constructed by the following

OpenGL call:
void glOrtho(double left, double right,

double bottom, double top,
double near, double far);

Same to glm::gtc::matrix_transform::ortho (..)

19

Perspective Projection
● Artists (Donatello, Brunelleschi, Durer, and Da Vinci) during

the renaissance discovered the importance of perspective for
making images appear realistic

● Perspective causes objects nearer to the viewer to appear
larger than the same object would appear farther away

● Homogenous coordinates allow perspective projections using
linear operators

20

Signs of Perspective
● Lines in projective space always intersect

at a point

21

Perspective Projection for a
Pinhole Camera

View planeImage sensor
plane

22

Perspective Projection Matrix
● The simplest transform for perspective

projection is:

●We divide by w to make the fourth
coordinate 1
● In this example, w = z
● Therefore, x’ = x / z, y’ = y / z, z’ = 0





































=



















′
′
′

10100
0000
0010
0001

z
y
x

w
zw
yw
xw

23

● As in the orthographic case, we map to
normalized device coordinates

Normalized Perspective

NDC

24

NDC Perspective Matrix

● The values of left, right, top, and bottom are specified at the
near depth. Let’s try some sanity checks:







































=



















′
′
′

−
⋅⋅−

−
+
−
+−

−
⋅

−
+−

−
⋅

1
z
y
x

0100
00

00
00

w
zw
yw
xw

nearfar
nearfar2

nearfar
nearfar

bottomtop
bottom)(top

bottomtop
near2

leftright
left)(right

leftright
near2

1
near

x
nearz
leftx

near
nearleftright

)leftright(near
leftright
leftnear2

−==
−

=′⇒
=
=

−−
+

−
⋅⋅

1
near

x
nearz
rightx

near
nearleftright

)leftright(near
leftright
rightnear2

==
−

=′⇒
=
= −

+
−
⋅⋅

25

NDC Perspective Matrix

● The values of left, right, top, and bottom are specified at the
near depth. Let’s try some sanity checks:







































=



















′
′
′

−
⋅⋅−

−
+
−
+−

−
⋅

−
+−

−
⋅

1
z
y
x

0100
00

00
00

w
zw
yw
xw

nearfar
nearfar2

nearfar
nearfar

bottomtop
bottom)(top

bottomtop
near2

leftright
left)(right

leftright
near2

1
far

farzfarz far
nearfar
nearfar2

nearfar
nearfar

nearfar
)nearfar(far

==
+

=′⇒= −
−

−
⋅⋅−

−
+

1
near

nearznearz near
nearfar
nearfar2

nearfar
nearfar

nearfar
)farnear(near

−==
+

=′⇒= −
−

−
⋅⋅−

−
+

26

Perspective in OpenGL
● OpenGL provides the following function to define

perspective transformations:
void glFrustum(double left, double right,

double bottom , double top,
double near, double far);

● Some think that using glFrustum() is nonintuitive.
So OpenGL provides a function with simpler, but
less general capabilities
void gluPerspective(double vertfov, double aspect,

double near, double far);

27

● Substituting the extents into glFrustum()

gluPerspective()

Simple “camera-
like” model

Can only specify
symmetric
frustums

29

Example in the Skeleton Codes
of PA2

void reshape(int w, int h)
{
width = w; height = h;
glViewport(0, 0, width, height);

glMatrixMode(GL_PROJECTION); // Select The Projection Matrix
glLoadIdentity(); // Reset The Projection Matrix
// Define perspective projection frustum
double aspect = width/double(height);

gluPerspective(45, aspect, 1, 1024);
glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix

glLoadIdentity(); // Reset The Projection Matrix
}

30

Class Objectives were:
● Know camera setup parameters
●Understand viewing and projection

processes

31

Homework
●Watch SIGGRAPH Videos
●Go over the next lecture slides

32

(Optional) PA3

● PA2: perform the transformation at the modeling
space

● PA3: perform the transformation at the viewing
space

33

Next Time
● Interaction

	Slide Number 1
	Class Objectives
	Viewing Transformations
	Viewing Transformations
	“Framing” the Picture
	Viewing Steps
	An Intuitive Specification
	Deriving the Viewing Transformation
	Rotation Component
	Translation Component
	Viewing Transform in OpenGL
	Example in the Skeleton Codes of PA2
	Projections
	Orthographic Projection
	Orthographic Projection
	View Volume and Normalized Device Coordinates
	Orthographic Projections to NDC
	Orthographic Projection in OpenGL
	Perspective Projection
	Signs of Perspective
	Perspective Projection for a Pinhole Camera
	Perspective Projection Matrix
	Normalized Perspective
	NDC Perspective Matrix
	NDC Perspective Matrix
	Perspective in OpenGL
	gluPerspective()
	Example in the Skeleton Codes of PA2
	Class Objectives were:
	Homework
	(Optional) PA3
	Next Time

