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Class Objectives
● Know camera setup parameters
●Understand viewing and projection 

processes

●Related to Ch. 4: Camera Setting



3

Viewing Transformations
●Map points from world spaces to eye 

space
● Can be composed from rotations and 

translations
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●Goal: specify position and orientation of our 
camera
● Defines a coordinate frame for eye space

Viewing Transformations
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“Framing” the Picture
● A new camera coordinate

● Camera position at the origin
● Z-axis aligned with the view direction
● Y-axis aligned with the up direction

●More natural to think of camera as an 
object positioned in the world frame
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Viewing Steps
●Rotate to align the two coordinate frames 

and, then, translate to move world space 
origin to camera’s origin
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An Intuitive Specification
● Specify three quantities:

● Eye point (e) - position of the camera
● Look-at point (p) - center of the image
● Up-vector (    ) - will be oriented upwards in 

the image
au

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Deriving the Viewing 
Transformation
● First compute the look-at vector and 

normalize

● Compute right vector and normalize
● Perpendicular to the look-at and up vectors

● Compute up vector
● is only approximate direction
● Perpendicular to right and look-at vectors

l⃗ = p − e l̂ =
l⃗

l⃗

r⃗ = l⃗ × ua �r =
r⃗
r⃗

au


�u = �r × l̂
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Rotation Component
● Map our vectors to the cartesian coordinate axes

● To compute       we invert the matrix on the right
● This matrix M is orthonormal (or orthogonal) – its rows are 

orthonormal basis vectors: vectors mutually orthogonal 
and of unit length

● Then, 
● So, 

1 0 0
0 1 0
0 0 1

= �r �u −l̂ Rv

Rv

M−1 = MT

𝐑𝐑𝑣𝑣 =
�rt
�ut
−l̂t
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Translation Component
● The rotation that we just derived is specified about 

the eye point in world space
● Need to translate all world-space coordinates so that the 

eye point is at the origin
● Composing these transformations gives our viewing 

transform, V 𝑤̇𝑤𝑡𝑡 = 𝑒̇𝑒𝑡𝑡𝐑𝐑𝑣𝑣𝐓𝐓−𝑒̇𝑒
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Viewing Transform in OpenGL
●OpenGL utility (glu) library provides a 

viewing transformation function:

gluLookAt (double eyex, double eyey, double eyez,
double centerx, double centery, double centerz,
double upx, double upy, double upz)

● Computes the same transformation that we 
derived and composes it with the current matrix

Same to glm::gtc::matrix_transform::lookAt (..)
Some tutorial: https://learnopengl.com/Getting-
started/Camera

https://learnopengl.com/Getting-started/Camera
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Example in the Skeleton Codes 
of PA2
void setCamera () 
{ …
// initialize camera frame transforms

for (i=0; i < cameraCount; i++ )
{
double* c = cameras[i];
wld2cam.push_back(FrameXform());
glPushMatrix();
glLoadIdentity();
gluLookAt(c[0],c[1],c[2], c[3],c[4],c[5], c[6],c[7],c[8]);
glGetDoublev( GL_MODELVIEW_MATRIX, wld2cam[i].matrix() );
glPopMatrix();
cam2wld.push_back(wld2cam[i].inverse());

}
….
}
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Projections
●Map 3D points in eye space to 2D points in 

image space

● Two common methods
● Orthographic projection
● Perspective projection
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Orthographic Projection
● Projects points along lines parallel to z-axis

● Also called parallel projection
● Used for top and side views in drafting and 

modeling applications
● Appears unnatural due to lack of 

perspective foreshortening

Notice that the parallel lines 
of the tiled floor remain 

parallel after orthographic 
projection!
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Orthographic Projection
● The projection matrix for orthographic projection 

is very simple 

● Next step is to convert points to NDC
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View Volume and Normalized 
Device Coordinates
●Define a view volume 
● Compose projection with a scale and a 

translation that maps eye coordinates to 
normalized device coordinates
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Orthographic Projections to NDC

Some sanity checks:

Scale the z 
coordinate  in exactly 
the same way 
.Technically, this 
coordinate is not 
part of the 
projection. But, we 
will use this value of 
z for other purposes
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Orthographic Projection in 
OpenGL
● This matrix is constructed by the following 

OpenGL call:
void glOrtho(double left, double right,

double bottom, double top, 
double near, double far );

Same to glm::gtc::matrix_transform::ortho (..)
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Perspective Projection
● Artists (Donatello, Brunelleschi, Durer, and Da Vinci) during 

the renaissance discovered the importance of perspective for 
making images appear realistic

● Perspective causes objects nearer to the viewer to appear 
larger than the same object would appear farther away

● Homogenous coordinates allow perspective projections using 
linear operators
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Signs of Perspective
● Lines in projective space always intersect 

at a point
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Perspective Projection for a 
Pinhole Camera

View planeImage sensor
plane
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Perspective Projection Matrix
● The simplest transform for perspective 

projection is:

●We divide by w to make the fourth 
coordinate 1
● In this example, w = z
● Therefore, x’ = x / z, y’ = y / z, z’ = 0
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● As in the orthographic case, we map to 
normalized device coordinates

Normalized Perspective

NDC
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NDC Perspective Matrix

● The values of left, right, top, and bottom are specified at the 
near depth. Let’s try some sanity checks:
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NDC Perspective Matrix

● The values of left, right, top, and bottom are specified at the 
near depth. Let’s try some sanity checks:
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Perspective in OpenGL
● OpenGL provides the following function to define 

perspective transformations:
void glFrustum(double left, double right, 

double bottom , double top,
double near, double far);

● Some think that using glFrustum( ) is nonintuitive. 
So OpenGL provides a function with simpler, but 
less general capabilities
void gluPerspective(double vertfov, double aspect,

double near, double far);
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● Substituting the extents into glFrustum() 

gluPerspective()

Simple “camera-
like” model

Can only specify 
symmetric
frustums
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Example in the Skeleton Codes 
of PA2

void reshape( int w, int h)
{
width = w;    height = h;
glViewport(0, 0, width, height);

glMatrixMode(GL_PROJECTION);            // Select The Projection Matrix
glLoadIdentity();                       // Reset The Projection Matrix
// Define perspective projection frustum
double aspect = width/double(height);

gluPerspective(45, aspect, 1, 1024);
glMatrixMode(GL_MODELVIEW);             // Select The Modelview Matrix

glLoadIdentity();                       // Reset The Projection Matrix
}
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Class Objectives were:
● Know camera setup parameters
●Understand viewing and projection 

processes



31

Homework
●Watch SIGGRAPH Videos
●Go over the next lecture slides



32

(Optional) PA3

● PA2: perform the transformation at the modeling 
space

● PA3: perform the transformation at the viewing 
space
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Next Time
● Interaction
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