CS380: Computer Graphics Triangle Rasterization

Sung-Eui Yoon (윤성의)

Course URL: http://sgvr.kaist.ac.kr/~sungeui/CG/

Class Objectives (Ch. 7)

- ●**Understand triangle rasterization using edge-equations**
- ●**Understand mechanics for parameter interpolations**
- ●**Realize benefits of incremental algorithms**
- **At the last class:**
	- \bullet **Discussed clipping and culling methods of view-frustum, back-face, and hierarchical culling methods**

Questions

- How do we apply clipping and culling when there are transparent parts are included in objects? .. virtual optical lenses to obtain realistic view?
- I thought GPUs are exploited most only When extensive multi-threading is used.
But up till now there doesn't seem to be **any multithreading in the src codes in the lecture/homework materials.**

Coordinate Systems

Primitive Rasterization

● **Rasterization converts vertex representation to pixel representation**

- ● **Coverage determination**
	- **Computes which pixels (samples) belong to a primitive**
- ● **Parameter interpolation**
	- **Computes parameters at covered pixels from parameters associated with primitive vertices**

Coverage Determination

- **Coverage is a 2D sampling problem**
	- ● **Commonly reduced to 1D problem of checking a sample point**

● **Possible coverage criteria:**

- ● **Distance of the primitive to sample point (often used with lines)**
- **Percent coverage of a pixel (used to be popular)**
- ● **Sample is inside the primitive (assuming it is closed)**

Rasterizing with Edge Equations

- **Compute edge equations from vertices**
- ●**Compute interpolation equations from vertex parameters**
- **Traverse pixels evaluating the edge equations**
- **Draw pixels for which all edge equations are positive**
- **Interpolate parameters at pixels**

Edge Equation Coefficients

●**The cross product between 2 homogeneous points generates the line between them**

$$
\begin{aligned}\n\bar{e} &= \dot{v}_0 \times \dot{v}_1 \\
&= [x_0 \quad y_0 \quad 1]^t \times [x_1 \quad y_1 \quad 1]^t \\
\bar{v}_0\n\end{aligned}
$$
\n
$$
\bar{e}_{01}\n\begin{aligned}\n\bar{e} &= \dot{v}_0 \times \dot{v}_1 \\
&= [(y_0 - y_1) \quad (x_1 - x_0) \quad (x_0 y_1 - x_1 y_0)] \\
A_{01}\n\end{aligned}
$$

 $\theta_{1}(\lambda,y)=A_{01}\lambda\mp D_{01}y\mp C_{01}$

●**A pixel at (x,y) is "inside" an edge if E(x,y)>0**

Shared Edges

● **Suppose two triangles share an edge. Which covers the pixel when the edge passes through the sample (E(x,y)=0)?**

● **Both**

- ● **Pixel color becomes dependent on order of triangle rendering**
- ● **Creates problems when rendering transparent objects - "double hitting"**

● **Neither**

- ●**Missing pixels create holes in otherwise solid surface**
- **We need a consistent tie-breaker!**

triangle 1

triangle 2

Shared Edges

● **A common tie-breaker:**

 $\text{bool } t = \begin{cases} A > 0 & \text{if } A \neq 0 \ B > 0 & \text{otherwise} \end{cases}$

● **Coverage determination becomes** if($E(x,y) > 0$ || $(E(x,y) == 0$ && t)) **pixel is covered**

Shared Vertices

- **Use "inclusion direction" as a tie breaker**
- **Any direction can be used**

• Snap vertices to subpixel grid and displace so that no vertex can be at the pixel center

Pixel center

Interpolating Parameters

- ● **Specify a parameter, say redness (r) at each vertex of the triangle**
	- **Linear interpolation creates a planar function**

$$
r(x,y) = A_r x + B_r y + C_r
$$

Solving for Linear Interpolation Equations

● **Given the redness of the three vertices, we can set up the following linear system:**

$$
\begin{bmatrix} r_0 & r_1 & r_2 \end{bmatrix} = \begin{bmatrix} A_r & B_r & C_r \end{bmatrix} \begin{bmatrix} x_0 & x_1 & x_2 \ y_0 & y_1 & y_2 \ 1 & 1 & 1 \end{bmatrix}
$$

with the solution: $[A, B, C_{r}] = [r_{0} r_{1} r_{2}]$ 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 0 $32'$ $\sqrt{2}$ $\sqrt{0}$ $\sqrt{0}$ 32 $\sqrt{2}$ 0 0 y_1 , y_1 y_0 , y_0 , y_1 y_0 r Ur Urllⁱo '1 '2 0 γ_1 γ_2 0 y_1 y_2 $(y_1 - y_2)$ $(x_2 - x_1)$ $(x_1y_2 - x_2y_1)$ $(y_0 - y_2)$ $(x_2 - x_0)$ $(x_0 y_2 - x_2 y_0)$ A, B, C, $\begin{bmatrix} 1 \\ -r_0 & r_1 & r_2 \end{bmatrix} \frac{(y_0 - y_1) (x_1 - x_0) (x_0 y_1 - x_1 y_0)}{r_0}$ X_2 X_3 X det y_0 y₁ y 111 $\sqrt{2}$ y_{0} , y_{0} λ_{0} λ_{1} , y_{1} λ_{1} , y_{0} λ_{1} tion:
 $\begin{bmatrix}\n(y_1 - y_2) & (x_2 - x_1) & (x_1y_2 - x_2y_1) \\
(y_0 - y_2) & (x_2 - x_0) & (x_0y_2 - x_2y_0)\n\end{bmatrix}$
 $= \begin{bmatrix}\nr_0 & r_1 & r_2\n\end{bmatrix} \begin{bmatrix}\n(y_0 - y_1) & (x_1 - x_0) & (x_0y_1 - x_1y_0)\n\end{bmatrix}$

det $\begin{bmatrix}\nx_0 & x_1 & x_2 \\
y_0 & y_1 & y_2 \\
1 & 1 & 1\n\end{bmatrix$

Triangle Area

Area =
$$
\frac{1}{2}
$$
 det $\begin{bmatrix} x_0 & x_1 & x_2 \ y_0 & y_1 & y_2 \ 1 & 1 & 1 \end{bmatrix}$ $\begin{aligned} & \bar{e} = \dot{v}_0 \times \dot{v}_1 \\ &= [x_0 & y_0 & 1]^t \times [x_1 & y_1 & 1]^t \\ &= [(y_0 - y_1) & (x_1 - x_0) & (x_0y_1 - x_1y_0)] \end{aligned}$
= $\frac{1}{2}((x_1y_2 - x_2y_1) - (x_0y_2 - x_2y_0) + (x_0y_1 - x_1y_0))$
= $\frac{1}{2}(C_0 + C_1 + C_2)$ // they are from edge equations; $C_2 = C_{01}$

●**Area = 0 means that the triangle is not visible**

- ● **Area < 0 means the triangle is back facing:**
	- ●**Reject triangle if performing back-face culling**
	- ● **Otherwise, flip edge equations by multiplying by -1**

Interpolation Equation

• The parameter plane equation is just a **The arc combination of the edge equations**

$$
\begin{bmatrix} A_r & B_r & C_r \end{bmatrix} = \frac{1}{2 \cdot \text{area}} \begin{bmatrix} r_0 & r_1 & r_2 \end{bmatrix} \begin{bmatrix} \bar{e}_0 \\ \bar{e}_1 \\ \bar{e}_2 \end{bmatrix}
$$

 $\overline{e_{0}}$, $\overline{e_{1}}$, $\overline{e_{2}}$ are vectors of edge equations 2 $u \in f$ run A_{01} , D_{01} , C_{01}

Clearer notations are used in the book

Z-Buffering

- **When rendering multiple triangles we need to determine which triangles are visible**
- **Use z-buffer to resolve visibility**
	- ●**Stores the depth at each pixel**
- **Initialize z-buffer to 1 (far value)**
	- ●**Post-perspective z values lie between 0 and 1**
- Linearly interpolate depth (z_{tri}) across **triangles**
- If $z_{\text{tri}}(x,y) < z$ Buffer[x][y] **write to pixel at (x,y)** $zBuffer[x][y] = z_{tri}(x, y)$

Traversing Pixels

● **Free to traverse pixels**

● **Edge and interpolation equations can be computed at any point**

● **Try to minimize work**

- ●**Restrict traversal to primitive bounding box**
- ● **Hierarchical traversal**
	- ●**Knock out tiles of pixels (say 4x4) at a time**

Incremental Algorithms

• Some computation can be saved by updating the edge and interpolation
equations incrementally:

$$
E(x, y) = Ax + By + C
$$

\n
$$
E(x + \Delta, y) = A(x + \Delta) + By + C
$$

\n
$$
= E(x, y) + A \cdot \Delta
$$

\n
$$
E(x, y + \Delta) = Ax + B(y + \Delta) + C
$$

\n
$$
= E(x, y) + B \cdot \Delta
$$

●**Equations can be updated with a single addition!**

Triangle Setup

- ● **Compute edge equations**
	- **3 cross products**
- ● **Compute triangle area**
	- **A few additions**
- ●**Cull zero area and back-facing triangles and/or flip edge equations**
- ● **Compute interpolation equations**
	- **Matrix/vector product per parameter**

Massive Models

100,000,000 primitives 1,000,000 pixels_____ 100 visible primitives/pixel

- **Cost to render a single triangle**
	- ●**Specify 3 vertices**
	- ●**Compute 3 edge equations**
	- ●**Evaluate equations one**

St. Mathew models consisting of about 400M triangles (Michelangelo Project)

Multi-Resolution or Levels-of-Detail (LOD) Techniques

● **Basic idea**

● **Render with fewer triangles when model is farther from viewer**

● **Methods**

● **Polygonal simplification**

Polygonal Simplification

● **Method for reducing the polygon count of mesh**

Static LODs

- ● Pre-compute discrete simplified meshes
	- Switch between them at runtime
	- Has very low LOD selection overhead

Excerpted from Hoppe's slides

What if there are so many objects?

From "cars", a Pixar movie

Some solution: Stochastic Simplification of Aggregate **Detail** Cook et al., ACM SIGGRAPH 2007

**Deep Appearance Prefiltering,
SIGGRAPH 23**

●**Prefiltering complex appearance of the scene using deep learning approaches**

Class Objectives were:

- ●**Understand triangle rasterization using edge-equations**
- ●**Understand mechanics for parameter interpolations**
- ●**Realize benefits of incremental algorithms**

Homework

- **Go over the next lecture slides before the class**
- ● **Watch 2 SIGGRAPH videos and submit your summaries before every Mon. class**
	- **Just one paragraph for each summary**
- ●**Submit questions two times during the whole semester**

Next Time

- ●**Illumination and shading**
- ●**• Texture mapping**

