The Mandelbrot Set and Julia Sets

"Run Away to Infinity" Criterion

Here we show that if some z_n is farther than 2 from the origin, then successive iterates will grow without bound. That is, they will run away to infinity.

For a complex number $z_n = x_n + i \star y_n$, the absolute value is

$$
|z_n| = \sqrt{(x_n^2 + y_n^2)}
$$

the distance from z_n to the origin.

Recalling the sequence z_0 , z_1 , ... is defined by $z_{n+1} = z_n^2 + c$, we show if some z_n satisfies $|z_n| > \max(2, |c|)$, then the sequence z_n , z_{n+1} , ... runs away to infinity.

So suppose $|z_n| > max(2, |c|)$.

Because $|z_n| > 2$, we can write

$$
|z_n| = 2 + e,
$$

for some $e > 0$.

Now

$$
|z_n^2| = |z_n^2 + c - c| \le |z_n^2 + c| + |c|
$$

So

$$
|z_n^2 + c| >= |z_n^2| - |c| = |z_n|^2 - |c|
$$
\n
$$
> |z_n|^2 - |z_n| \text{ (because } |z_n| > |c|)
$$
\n
$$
= (|z_n| - 1) \cdot |z_n| = (1 + e) \cdot |z_n|
$$

That is, $|z_{n+1}| > (1 + e) \cdot |z_n|$. Iterating, $|z_{n+k}| > (1 + e)^{k} \cdot |z_n|$.

To complete the proof that $|z_n| > 2$ implies the sequence runs away to infinity, observe that if $|c| > 2$, then

> $z_0 = 0$ $z_1 = c$ and $z_2 = c^2 + c = c*(c + 1)$

so $|z_2| = |c| * |c + 1| > |c|$ (noting $|c + 1| > 1$ because $|c| > 2$).

Return to JuliaSets.