The Mandelbrot Set and Julia Sets

"Run Away to Infinity" Criterion

Here we show that if some z_n is farther than 2 from the origin, then successive iterates will grow without bound. That is, they will run away to infinity.

For a complex number $z_n = x_n + i * y_n$, the absolute value is

$$|z_{n}| = sqrt(x_{n}^{2} + y_{n}^{2}),$$

the distance from z_n to the origin.

Recalling the sequence $z_0, z_1, ...$ is defined by $z_{n+1} = z_n^2 + c$, we show if some z_n satisfies $|z_n| > \max(2, |c|)$, then the sequence $z_n, z_{n+1}, ...$ runs away to infinity.

So suppose $|z_n| > \max(2, |c|)$.

Because $|z_n| > 2$, we can write

$$|z_n| = 2 + e$$
,

for some e > 0.

Now

$$|z_n^2| = |z_n^2 + c - c| \le |z_n^2 + c| + |c|$$

So

$$|z_n^2 + c| \ge |z_n^2| - |c| = |z_n|^2 - |c|$$

> $|z_n|^2 - |z_n|$ (because $|z_n| \ge |c|$)
= $(|z_n| - 1) \ge |z_n| = (1 + e) \ge |z_n|$

That is, $|z_{n+1}| > (1 + e) * |z_n|$. Iterating, $|z_{n+k}| > (1 + e)^k * |z_n|$.

To complete the proof that $|z_n| > 2$ implies the sequence runs away to infinity, observe that if |c| > 2, then

 $z_0 = 0$ $z_1 = c$ and $z_2 = c^2 + c = c*(c + 1)$

so $|z_2| = |c| \cdot |c + 1| > |c|$ (noting |c + 1| > 1 because |c| > 2).

Return to JuliaSets.