
CS380: Computer Graphics
Screen Space & World Space

Sung-Eui Yoon
(윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/CG



2

Class Objectives
●Understand different spaces and basic 

OpenGL commands
●Understand a continuous world, Julia sets



3

Your New World
● A 2D square ranging from (-1, -1) to (1, 1)
● You can draw in the box with just a few 

lines of code



4

Code Example

OpenGL Code:

glColor3d(0.0, 0.8, 1.0);

glBegin(GL_POLYGON);

glVertex2d(-0.5, -0.5);

glVertex2d( 0.5, -0.5);

glVertex2d( 0.5,  0.5);

glVertex2d(-0.5,  0.5);

glEnd();



5

OpenGL Command Syntax
● glColor3d(0.0, 0.8, 1.0);

Suffix Data Type Corresponding 
C-Type

OpenGL 
Type

b 8-bit int. singed char GLbyte

s 16-bit int. short GLshort

i 32-bit int. int GLint

f 32-bit float float GLfloat

d 64-bit double double GLdouble

ub 8-bit unsinged int. unsigned char GLubyte

us 16-bit unsigned int. unsigned short GLushort

ui 32-bit unsigned int. unsigned int GLuint



6

OpenGL Command Syntax
● You can use pointers or buffers

●Using buffers for drawing is much more 
efficient

glColor3f(0.0, 0.8, 1.0);

GLfloat color_array [] = {0.0, 0.8, 1.0};
glColor3fv (color_array);



7

OpenGL Code:

glColor3d(0.0, 0.8, 1.0);

glBegin(GL_POLYGON);

glVertex2d(-0.5, -0.5);

glVertex2d( 0.5, -0.5);

glVertex2d( 0.5,  0.5);

glEnd()

Another Code Example



8

Drawing Primitives in OpenGL

The red book 



9

OpenGL Code:
glColor3d(0.8, 0.6, 0.8);

glBegin(GL_LINE_LOOP);

for (i = 0; i < 360;i = i + 2)

{

x = cos(i*pi/180);

y = sin(i*pi/180);

glVertex2d(x, y);

}

glEnd();

Yet Another Code Example



10

OpenGL as a State Machine
●OpenGL maintains various states until you 

change them

// set the current color state
glColor3d(0.0, 0.8, 1.0);

glBegin(GL_POLYGON);
glVertex2d(-0.5, -0.5);
glVertex2d( 0.5, -0.5);
glVertex2d( 0.5,  0.5);

glEnd()



11

OpenGL as a State Machine
●OpenGL maintains various states until you 

change them

●Many state variables refer to modes (e.g., 
lighting mode)
● You can enable, glEnable (), or disable, 

glDisable ()

● You can query state variables
● glGetFloatv (), glIsEnabled (), etc.
● glGetError (): very useful for debugging



12

Debugging Tip

#define CheckError(s) \
{ \
GLenum error = glGetError(); \
if (error) \
printf("%s in %s\n",gluErrorString(error),s); \

}

glTexCoordPointer (2, x,  sizeof(y), (GLvoid *) TexDelta);
CheckError ("Tex Bind");

glDrawElements(GL_TRIANGLES, x, GL_UNSIGNED_SHORT, 0);
CheckError ("Tex Draw");



13

OpenGL Ver. 4.3 (Using Retained 
Mode)

#include <iostream>
using namespace std;
#include "vgl.h"
#include "LoadShaders.h"
enum VAO_IDs { Triangles, NumVAOs };
enum Buffer_IDs { ArrayBuffer, NumBuffers };
enum Attrib_IDs { vPosition = 0 };
GLuint VAOs[NumVAOs];
GLuint Buffers[NumBuffers];
const GLuint NumVertices = 6;

Void init(void)  {
glGenVertexArrays(NumVAOs, VAOs);
glBindVertexArray(VAOs[Triangles]);
GLfloat vertices[NumVertices][2] = {
{ -0.90, -0.90 }, // Triangle 1
{ 0.85, -0.90 },
{ -0.90, 0.85 },
{ 0.90, -0.85 }, // Triangle 2
{ 0.90, 0.90 },
{ -0.85, 0.90 } };
glGenBuffers(NumBuffers, Buffers);

glBindBuffer(GL_ARRAY_BUFFER, Buffers[ArrayBuffer]);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices),
vertices, GL_STATIC_DRAW);

ShaderInfo shaders[] = {
{ GL_VERTEX_SHADER, "triangles.vert" },
{ GL_FRAGMENT_SHADER, "triangles.frag" },
{ GL_NONE, NULL } };
GLuint program = LoadShaders(shaders);
glUseProgram(program);
glVertexAttribPointer(vPosition, 2, GL_FLOAT,
GL_FALSE, 0, BUFFER_OFFSET(0));
glEnableVertexAttribArray(vPosition);
}

Void display(void) {
glClear(GL_COLOR_BUFFER_BIT);
glBindVertexArray(VAOs[Triangles]);
glDrawArrays(GL_TRIANGLES, 0, NumVertices);
glFlush();
}
Int main(int argc, char** argv) {
glutInit(&argc, argv);   glutInitDisplayMode(GLUT_RGBA);
glutInitWindowSize(512, 512); 
glutInitContextVersion(4, 3);
glutInitContextProfile(GLUT_CORE_PROFILE);
glutCreateWindow(argv[0]);
if (glewInit()) {
exit(EXIT_FAILURE); }
init();glutDisplayFunc(display);  glutMainLoop();
}



14

● Study a visualization of 
a simple iterative 
function defined over 
the imaginary plane

● It has chaotic behavior
● Small changes have 

dramatic effects

Julia Sets (Fractal)

Demo



15

Julia Set - Definition
● The Julia set Jc for a number c in the 

complex plane P is given by:

Jc = { p  | pP and 
pi+1 = p2

i + c  converges to a  
fixed limit }



16

Complex Numbers
● Consists of 2 tuples (Real, Imaginary)

● E.g., c = a + bi

●Various operations
● c1 + c2 = (a1 + a2) + (b1 + b2)i
● c1  c2 = (a1a2 - b1b2) + (a1b2 + a2b1)i 
● (c1)2 = ((a1)2 – (b1)2) + (2 a1b1)i
● |c| = sqrt(a2 + b2)



17

●Real numbers are a subset of complex 
numbers:
● Consider c = [0, 0], and p = [x, 0]
● For what values of x is xi+1 = xi

2 convergent?

Convergence Example

x0-4 = 0.5, 0.25, 0.0625, 0.0039

How about x0 = 0.5?



18

●Real numbers are a subset of complex 
numbers:
● consider c = [0, 0], and p = [x, 0]
● for what values of x is xi+1 = xi

2 convergent?

Convergence Example

x0-4 = 1.1, 1.21, 1.4641,  2.14358

0 1

How about x0 = 1.1?



19

Convergence Properties
● Suppose  c = [0,0], for what complex 

values of p does the series converge?
● For real numbers:

● If |xi| > 1, then the series diverges
● For complex numbers

● If |pi| > 2, then the series diverges 
● Loose bound

The black points are 
the ones in Julia set

Real part

Imaginary part



20

class Complex {
float re, im;

}; 

viod Julia (Complex p, Complex c, int & i, float & r) 
{

int maxIterations = 256;
for (i = 0; i < maxIterations;i++)
{

p = p*p + c;
rSqr = p.re*p.re + p.im*p.im;

if( rSqr > 4 )
break;

}
r = sqrt(rSqr);

}

A Peek at the Fractal Code

i & r are used to 
assign a color



21

How can we see more?

●Our world view 
allows us to see so 
much
● What if we want to 

zoom in?
●We need to define a 

mapping from our 
desired world view 
to our screen



22

Mapping from World to Screen

World

Screen

Window



23

Screen Space

● Graphical image is 
presented by setting colors 
for a set of discrete samples 
called “pixels”
● Pixels displayed on screen in 

windows

● Pixels are addressed as 2D 
arrays
● Indices are “screen-

space” coordinates

(0,0) (width-1,0)

(width-1, height-1)(0,height-1)



24

OpenGL Coordinate System



25

Pixel Independence
●Often easier to structure graphical objects 

independent of screen or window sizes
●Define graphical objects in “world-space” 

800 cubits

500 cubits

2 meters

1.25 meters



26

Normalized Device Coordinates
● Intermediate “rendering-space” 

● Compose world and screen space
● Sometimes called 

“canonical screen space”

-1

-1

1

1



27

Why Introduce NDC?
● Simplifies many rendering operations

● Clipping, computing coefficients for 
interpolation

● Separates the bulk of geometric processing 
from the specifics of rasterization (sampling)

● Will be discussed later



28

Mapping from World to Screen

World NDC

Screen

Window

xw xn xs



29

World Space to NDC

-1
w.l

1
w.r

-1
w.b

1
w.t

xn?
xwxn = Axw + B

w.lw.r
(w.l)x

1)(1
1)(x wn








12 




w.lw.r
(w.l)xx w

n

w.lw.r
w.lw.rB

w.lw.r
A







    ,2



30

● Same approach

● Solve for xs

NDC to Screen Space

origin.x
-1 1

-1

origin.y
1

width

height

xs = width
xn + 1

2
+ origin.x

xs = Axn + B

A =
width

2
; B =

width
2

+ origin.x

xs
xn

1)(1
1)(x

width
origin.xx ns









31

Class Objectives were:
●Understand different spaces and basic 

OpenGL commands
●Understand a continuous world, Julia sets



32

Any Questions?
● Come up with one question on what we 

have discussed in the class and submit at 
the end of the class
● 1 for already answered questions
● 2 for typical questions 
● 3 for questions with thoughts or that surprised 

me

● Submit four times during the whole 
semester



33

Homework
●Go over the next lecture slides before the 

class
●Watch 2 SIGGRAPH videos and submit your 

summaries before every Tue. class
● Send an email to cs380ta@gmail.com
● Just one paragraph for each summary

Example:
Title: XXX XXXX XXXX
Abstract: this video is about  accelerating the 
performance of ray tracing. To achieve its goal, they 
design a new technique for reordering rays, since by 
doing so, they can improve the ray coherence and thus 
improve the overall performance.



34

Homework for Next Class
●Read Chapter 1, Introduction

● Read “Numerical issues” carefully



35

Next Time
● Basic OpenGL program structure and how 

OpenGL supports different spaces


