
CS380: Computer Graphics
Modeling Transformations

Sung-Eui Yoon
(윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/CG/

2

Class Objectives (Ch. 6)
● Know the classic data processing steps,

rendering pipeline, for rendering primitives
●Understand 3D translations and rotations

3

Outline
●Where are we going?

● Sneak peek at the rendering pipeline
● Vector algebra
●Modeling transformation
● Viewing transformation
● Projections

4

The Classic Rendering Pipeline
●Object primitives defined by

vertices fed in at the top
● Pixels come out in the display at

the bottom
● Commonly have multiple

primitives in various stages of
rendering

5

Modeling Transforms
● Start with 3D models defined in

modeling spaces with their own
modeling frames:

● Modeling transformations orient models
within a common coordinate frame
called world space,
● All objects, light sources, and the camera

live in world space

● Trivial rejection
attempts to
eliminate
objects that
cannot possibly
be seen
● An optimization

t
n

t
2

t
1 m,...,m,m 

tw

6

Illumination
● Illuminate potentially visible objects
● Final rendered color is determined by

object’s orientation, its material
properties, and the light sources in the
scene

7

Viewing Transformations
●Maps points from world space to

eye space:

● Viewing position is transformed to
the origin

● Viewing direction is oriented along
some axis

Vtt we  

8

Clipping and Projection
● We specify a volume called a viewing

frustum
● Map the view frustum to the unit cube
● Clip objects against the view volume,

thereby eliminating geometry not visible in
the image

● Project objects
into two-dimensions

● Transform from
eye space to
normalized device
coordinates

9

Rasterization and Display
● Transform normalized device

coordinates to screen space
● Rasterization converts objects pixels

- Almost every step in the rendering
pipeline involves a change of coordinate
systems!
- Transformations are central to
understanding 3D computer graphics

10

But, this is a architectural
overview of a recent GPU (Fermi)

● Unified
architecture

● Highly parallel
● Support CUDA

(general
language)

● Wide memory
bandwidth

11

But, this is a architectural
overview of a recent GPU

12

Recent CPU Chips (Intel’s Core
i7 processors)

13

Vector Algebra
●We already saw vector addition and

multiplications by a scalar
●Will study three kinds of vector

multiplications
● Dot product (⋅) - returns a scalar
● Cross product (×) - returns a vector
● Tensor product (⊗) - returns a matrix

14

Dot Product ()

●Returns a scalar s
●Geometric interpretations s:

●
● Length of projected onto

and or vice versa
● Distance of from the origin

in the direction of

    s

1
b
b
b

0aaababas,

0
b
b
b

0aaababa
z

y

x

zyx
T

z

y

x

zyx
T 







































 

cosθbaba 

a
θ

b

a

b

cosθb

b

b
a

15

Cross Product (×)

● Return a vector that is perpendicular to both
and , oriented according to the right-hand rule

● The matrix is called the skew-symmetric matrix of

0cb
0ca

c

0
b
b
b

0000
00aa
0a0a
0aa0

ba
z

y

x

xy

xz

yz















































 




 xyyxzxxzyzzy babababababac 

c a
b

a

16

Cross Product (×)
● A mnemonic device for remembering the

cross-product

17

Modeling Transformations
● Vast majority of transformations are

modeling transforms
●Generally fall into one of two classes

● Transforms that move parts within the model

● Transforms that relate a local model’s frame to
the scene’s world frame

●Usually, Euclidean transforms, 3D rigid-
body transforms, are needed

cMcc tt
1

t
1 wmm  

cMcc  t
1

t
1

t
1 mmm 

18

Translations
● Translate points by adding offsets to their

coordinates

● The effect of this translation:
























1000
t100
t010
t001

Twhere
cwTcmcm
cmTcmcm

z

y

x

ttt

ttt





19

3D Rotations
●More complicated than 2D rotations

● Rotate objects along a rotation axis

● Several approaches
● Compose three canonical rotations about the

axes
● Quaternions

20

Geometry of a Rotation

●Natural basis for rotation of a vector about
a specified axis:

21

Geometry of a Rotation

22

Tensor Product ()

● Creates a matrix that when applied to a
vector return scaled by the project of
onto

ac c
b

23

Tensor Product ()
●Useful when
● The matrix is called

the symmetric matrix of
● We shall denote this

ab 
aa

A
a

)(

)(

caa

caa





24

Sanity Check
● Consider a rotation by about the x-axis

● You can check it in any computer graphics
book, but you don’t need to memorize it

 sin

0000
0010
0100
0000

)cos1(

0000
0000
0000
0001

cos

0000
0100
0010
0001

1000
0000
0000
0000

),

0
0
0
1

(




































































































Rotate






















1000
0cossin0
0sincos0
0001




25

Rotation using Affine
Transformation

â

x

x

b


 




















1
0

ˆ
t
s

obxa 


 




















1
0

ˆ
t
s

Robxa x




s

t
Assume that these basis
vectors are normalized

26

Quaternion
●Developed by W. Hamilton in 1843

● Based on complex numbers

● Two popular notations for a quaternion, q
● w + xi + yj + zk, where i2= j2= k2= ijk = -1
● [w, v], where w is a scalar and v is a vector

● Conversion from the axis, v, and angle, t
● q = [cos (t/2), sin (t/2) v]
● Can represent rotation

27

Basic Quaternion Operations
● Addition

● q + q´ = [w + w´, v + v´]
● Multiplication

● qq´ = [ww´ - v · v´, v x v´ + wv´ +w´v]
● Conjugate

● q* = [w, -v]
●Norm

● N(q) = w2 + x2 + y2+ z2

● Inverse
● q-1 = q* / N(q)

28

Basic Quaternion Operations
● q is a unit quaternion if N(q)= 1

● Then q-1 = q*

● Identity
● [1, (0, 0, 0)] for multiplication
● [0, (0, 0, 0)] for addition

29

Rotations using Quaternions
● Suppose that you want to rotate a

vector/point v
● Then, the rotated v’

● v´ = q r q-1, where r = [0, v])

● But, what is q?
● Notice that q is a unit quaternion

● Compositing rotations
● R = R2 R1 (rotation R1 followed by rotation

R2)

30

Example
●Rotate by degree a along x axis:

qx = [cos (a/2), sin(a/2) (1, 0, 0)]

31

Quaternion to Rotation Matrix
●Q = w + xi + yj + zk
●Rm =| 1-2y2-2z2 2yz+2wx 2xz-2wy |

| 2xy-2wz 1-2x2-2z2 2yz-2wx |
| 2xz+2wy 2yz-2wx 1-2x2-2y2|

●We can also convert a rotation matrix to a
quaternion

32

Advantage of Quaternions
●More efficient way to generate arbitrary

rotations
● Less storage than 4 x 4 matrix
● Easier for smooth rotation
●Numerically more stable than 4x4 matrix

(e.g., no drifting issue)
●More readable

33

Class Objectives were:
● Know the classic data processing steps,

rendering pipeline, for rendering primitives
●Understand 3D translations and rotations

34

PA2: Simple Animation &
Transformation

35

OpenGL: Display Lists
●Display lists

● A group of OpenGL commands stored for later
executions

● Can be optimized in the graphics hardware
● Thus, can show higher performance

● Immediate mode
● Causes commands to be executed immediately

36

An Example

void drawCow()
{
if (frame == 0)
{
cow = new WaveFrontOBJ("cow.obj");
cowID = glGenLists(1);
glNewList(cowID, GL_COMPILE);
cow->Draw();
glEndList();

}

..
glCallList(cowID);
..

}

37

API for Display Lists

Gluint glGenLists (range)
- generate a continuous set of empty display lists

void glNewList (list, mode) & glEndList ()
: specify the beginning and end of a display list

void glCallLists (list)
: execute the specified display list

38

OpenGL: Getting Information
from OpenGL
void main(int argc, char* argv[])
{
…
int rv,gv,bv;
glGetIntegerv(GL_RED_BITS,&rv);
glGetIntegerv(GL_GREEN_BITS,&gv);
glGetIntegerv(GL_BLUE_BITS,&bv);
printf("Pixel colors = %d : %d : %d\n", rv, gv, bv);
….

}

void display () {
..
glGetDoublev(GL_MODELVIEW_MATRIX, cow2wld.matrix());
..
}

39

Homework
●Read:

● Ch. 7: Viewing

●Watch SIGGRAPH Videos
●Go over the next lecture slides

40

Next Time
● Viewing transformations

