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Class Objectives (Ch. 6)
● Know the classic data processing steps, 

rendering pipeline, for rendering primitives
●Understand 3D translations and rotations
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Outline
●Where are we going?

● Sneak peek at the rendering pipeline
● Vector algebra
●Modeling transformation
● Viewing transformation
● Projections
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The Classic Rendering Pipeline
●Object primitives defined by 

vertices fed in at the top
● Pixels come out in the display at 

the bottom
● Commonly have multiple 

primitives in various stages of 
rendering
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Modeling Transforms
● Start with 3D models defined in 

modeling spaces with their own 
modeling frames: 

● Modeling transformations orient models 
within a common coordinate frame 
called world space, 
● All objects, light sources, and the camera 

live in world space

● Trivial rejection
attempts to 
eliminate
objects that
cannot possibly
be seen
● An optimization
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Illumination
● Illuminate potentially visible objects
● Final rendered color is determined by 

object’s orientation, its material 
properties, and the light sources in the 
scene
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Viewing Transformations
●Maps points from world space to 

eye space:

● Viewing position is transformed to 
the origin

● Viewing direction is oriented along 
some axis

Vtt we  
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Clipping and Projection
● We specify a volume called a viewing 

frustum
● Map the view frustum to the unit cube
● Clip objects against the view volume, 

thereby eliminating geometry not visible in 
the image

● Project objects 
into two-dimensions

● Transform from
eye space to 
normalized device 
coordinates



9

Rasterization and Display
● Transform normalized device 

coordinates to screen space
● Rasterization converts objects pixels 

- Almost every step in the rendering 
pipeline involves a change of coordinate 
systems!
- Transformations are central to 
understanding 3D computer graphics
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But, this is a architectural 
overview of a recent GPU (Fermi) 

● Unified 
architecture

● Highly parallel
● Support CUDA 

(general 
language)

● Wide memory 
bandwidth
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But, this is a architectural 
overview of a recent GPU 
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Recent CPU Chips (Intel’s Core 
i7 processors)
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Vector Algebra
●We already saw vector addition and 

multiplications by a scalar
●Will study three kinds of vector 

multiplications
● Dot product (⋅) - returns a scalar
● Cross product (×) - returns a vector
● Tensor product (⊗) - returns a matrix
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Dot Product ( )

●Returns a scalar s
●Geometric interpretations s:

●
● Length of      projected onto      

and       or vice versa
● Distance of      from the origin 

in the direction of 
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Cross Product (×)

● Return a vector     that is perpendicular to both   
and    , oriented according to the right-hand rule

● The matrix is called the skew-symmetric matrix of
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Cross Product (×)
● A mnemonic device for remembering the 

cross-product
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Modeling Transformations
● Vast majority of transformations are 

modeling transforms
●Generally fall into one of two classes

● Transforms that move parts within the model

● Transforms that relate a local model’s frame to 
the scene’s world frame

●Usually, Euclidean transforms, 3D rigid-
body transforms, are needed
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Translations
● Translate points by adding offsets to their 

coordinates

● The effect of this translation:
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3D Rotations
●More complicated than 2D rotations

● Rotate objects along a rotation axis

● Several approaches
● Compose three canonical rotations about the 

axes
● Quaternions
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Geometry of a Rotation

●Natural basis for rotation of a vector about 
a specified axis:
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Geometry of a Rotation
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Tensor Product ( )

● Creates a matrix that when applied to  a 
vector   return    scaled by the project of  
onto 

ac c
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Tensor Product ( )
●Useful when       
● The matrix             is called 

the symmetric matrix of 
● We shall denote this 
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Sanity Check
● Consider a rotation by about the x-axis

● You can check it in any computer graphics 
book, but you don’t need to memorize it
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Rotation using Affine 
Transformation

â

x

x

b


 




















1
0

ˆ
t
s

obxa 


 




















1
0

ˆ
t
s

Robxa x




s

t
Assume that these basis 
vectors are normalized



26

Quaternion
●Developed by W. Hamilton in 1843

● Based on complex numbers

● Two popular notations for a quaternion, q
● w + xi + yj + zk, where i2= j2= k2= ijk = -1
● [w, v], where w is a scalar and v is a vector

● Conversion from the axis, v, and angle, t
● q = [cos (t/2), sin (t/2) v] 
● Can represent rotation
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Basic Quaternion Operations
● Addition

● q + q´ = [w + w´, v + v´]
● Multiplication

● qq´ = [ww´ - v · v´, v x v´ + wv´ +w´v] 
● Conjugate

● q* = [w, -v]
●Norm

● N(q) = w2 + x2 + y2+ z2

● Inverse
● q-1 = q* / N(q) 
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Basic Quaternion Operations
● q is a unit quaternion if N(q)= 1

● Then q-1 = q* 

● Identity
● [1, (0, 0, 0)] for multiplication
● [0, (0, 0, 0)] for addition
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Rotations using Quaternions
● Suppose that you want to rotate a 

vector/point v
● Then, the rotated v’

● v´ = q r q-1, where r = [0, v]) 

● But, what is q?
● Notice that q is a unit quaternion

● Compositing rotations
● R = R2 R1 (rotation R1 followed by rotation 

R2)
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Example
●Rotate by degree a along x axis:

qx = [cos (a/2), sin(a/2) (1, 0, 0)] 
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Quaternion to Rotation Matrix
●Q = w + xi + yj + zk 
●Rm =| 1-2y2-2z2 2yz+2wx 2xz-2wy  |

| 2xy-2wz 1-2x2-2z2 2yz-2wx |
| 2xz+2wy 2yz-2wx 1-2x2-2y2|

●We can also convert a rotation matrix to a 
quaternion
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Advantage of Quaternions
●More efficient way to generate arbitrary 

rotations
● Less storage than 4 x 4 matrix
● Easier for smooth rotation
●Numerically more stable than 4x4 matrix 

(e.g., no drifting issue)
●More readable
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Class Objectives were:
● Know the classic data processing steps, 

rendering pipeline, for rendering primitives
●Understand 3D translations and rotations
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PA2: Simple Animation & 
Transformation
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OpenGL: Display Lists
●Display lists

● A group of OpenGL commands stored for later 
executions

● Can be optimized in the graphics hardware
● Thus, can show higher performance

● Immediate mode
● Causes commands to be executed immediately
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An Example

void drawCow()   
{  
if (frame == 0)
{
cow = new WaveFrontOBJ( "cow.obj" );
cowID = glGenLists(1);
glNewList(cowID, GL_COMPILE);
cow->Draw();
glEndList();

}

..
glCallList(cowID);
..

}
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API for Display Lists 

Gluint glGenLists (range)
- generate a continuous set of empty display lists 

void glNewList (list, mode)  & glEndList ()
: specify the beginning and end of a display list

void glCallLists (list)
: execute the specified display list
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OpenGL: Getting Information 
from OpenGL
void main( int argc, char* argv[] )
{
…
int rv,gv,bv;
glGetIntegerv(GL_RED_BITS,&rv);
glGetIntegerv(GL_GREEN_BITS,&gv);
glGetIntegerv(GL_BLUE_BITS,&bv);
printf( "Pixel colors = %d : %d : %d\n", rv, gv, bv );
….

}

void display () {
..
glGetDoublev(GL_MODELVIEW_MATRIX, cow2wld.matrix());
..
}
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Homework
●Read:

● Ch. 7: Viewing

●Watch SIGGRAPH Videos
●Go over the next lecture slides
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Next Time
● Viewing transformations


