CS380: Computer Graphics
Viewing Transformation

Sung-Eul Yoon
(=d2)

Course URL.:
http://sglab.kaist.ac.kr/~sungeui/CG/

KAIST

Class Objectives (Ch. 7)

e KNnow camera setup parameters

e Understand viewing and projection
processes

KAIST

Viewing Transformations

e Map points from world spaces to eye
space

e Can be composed from rotations and
translations

Ever seen a purple con? : 1|.|fiir'|g
. Transformation

Viewing Transformations

e Goal: specify position and orientation of our
camera

o Deflnes a coordlnate frame for eye space

 KAIST

“Framing” the Picture

e A new camera coordinate
e Camera position at the origin
e Z-axis aligned with the view direction
e Y-axis aligned with the up direction

e More natural to think of camera as an
object positioned in the world frame

KAIST

Viewing Steps

e Rotate to align the two coordinate frames
and, then, translate to move world space
origin to camera’s origin

y

An Intuitive Specification

e Specify three quantities:

e Eye point (e) - position of the camera
e Look-at point (p) - center of the image
e Up-vector (U,) - will be oriented upwards in

KAIST

Deriving the Viewing
Transformation

e First compute the look-at vector and

normalize . A~
|=p-e IZT

e Compute right vector and normalize
e Perpendicular to the look-at and up vectors

R ~ T A
r=Ixu, r= ;
L
e Compute up vector e '\
e U, is only approximate direction | p

e Perpendicular to right and look-at vectors
u=rxl|
KAIST

Rotation Component

e Map our vectors to the cartesian coordinate axes
1 0 O]

0 1 0|=F & -IR,

00 1]

e To compute R, we invert the matrix on the right
e This matrix M is orthonormal (or orthogonal) — its rows are
orthonormal basis vectors: vectors mutually orthogonal
and of unit length

e Then, M'=M" - ot]
e SO, ~t
R =| U

9 - - KAIST

Translation Component

e The rotation that we just derived is specified about
the eye point in world space
e Need to translate all world-space coordinates so that the
eye point is at the origin
e Composing these transformations gives our viewing

transform, V . t .
W =eR,T_,
f f, F 01 0 0 —-e] [¢ _fF.e
verT, | % Y 4 90 10 e 1g ~G-e
- -1, -1, 00 0 1 -e, _ | .o
0 0O 10 O 1 0 0 0 1

Transform a world-space point into a point in the eye-space

Viewing Transform in OpenGL

e OpenGL utility (glu) library provides a
viewing transformation function:

(double eyex, double eyey, double eyez,
double centerx, double centery, double centerz,
double upx, double upy, double upz)

e Computes the same transformation that we
derived and composes it with the current matrix

11 KAIST

Examgle INn the Skeleton Codes
of PA

void setCamera ()

{..

/[initialize camera frame transforms

for (i=0; i < cameraCount; i++)

{
double* ¢ = cameras]i];
wld2cam.push_back(FrameXform());
glPushMatrix();
glLoadldentity();
gluLookAt(c[0],c[1],c[2], c[3],c[4],c[5], c[6],c[7],c[8]);
glGetDoublev(GL_MODELVIEW_MATRIX, wld2cam[i].matrix());
glPopMatrix();
cam2wld.push_back(wld2cam[i].inverse());

12 KAIST

13

Projections

e Map 3D points In eye space to 2D points in
Image space :

.,.*5'#;! ".:;? O RGT %
Ay % 2 - ?’?ggi e

e Two common methods
e Orthographic projection
e Perspective projection

KAIST

14

Orthographic Projection

e Projects points along lines parallel to z-axis
e Also called parallel projection

e Used for top and side views In drafting and
modeling applications

e Appears unnatural due to lack of
perspective foreshortening

Notice that the parallel lines
of the tiled floor remain
parallel after orthographic
projection!

15

Orthographic Projection

e The projection matrix for orthographic projection

IS very simple

X 1 0 0 O x
y' 01 0 0|y
z| 10 0 0 0z
1] |10 0 0 11

e Next step is to convert points to NDC

KAIST

View Volume and Normalized

Device Coordinates

e Define a view volume
e Compose projection with a scale and a

translation that maps eye coordinates to

normalized device coordinates

rop —_

bottom |
P

ft’lﬂ eye space

16

—~far

T hnear

right

Normalized Device Coordinates

_AIST

Orthographic Projections to NDC

X' m
y| | O
zZ| | 0
1] 1 0

Some sanity checks:

x=left = X' =

Xx=right = X' =

17

—(right +left)]
0 0 right —left X
2 —(top +bottom)
top —bottom 0 top—bottom y
2 —(far +near)
0 far—near far—near Z
0 0 1 \l__"_
&/
2left _ right+left __ right-left __ _1
right —left right—left = right—left —
2-right right+left _ right—left

=1

right—left ~ right—left — right—left

Scale the z
coordinate 1n
exactly the same
way .Technically,
this coordinate is
not part of the
projection. But,
we will use this
value of z for
other purposes

KAIST

18

Orthographic Projection in
OpenGL

e This matrix is constructed by the following
OpenGL call:

void glOrtho(double left, double right,
double bottom, double top,
double near, double far);

e 2D version (another GL utility function):

void gluOrtho2D(double left, GLdouble right,
double bottom, GLdouble top);

, which is just a call to glOrtho() with near = -1
and far = 1

KAIST

Perspective Projection

e Artists (Donatello, Brunelleschi, Durer, and Da Vinci) during
the renaissance discovered the importance of perspective for
making images appear realistic

e Perspective causes objects nearer to the viewer to appear
larger than the same object would appear farther away

e Homogenous coordlnates allow perspectlve prOJectlons using
linear operators ' o

19

20

Signs of Perspective

e Lines In projective space always intersect
at a point

KAIST

21

Perspective Projection

view plane

KAIST

22

Perspective Projection Matrix

e The simplest transform for perspective
projection is:

/

WX 1 0 0 Ofx
wy'’ 0 1 0 Ofvy
wz| |0 0 0 0z
w 0 0 1 0)1]

e We divide by w to make the fourth
coordinate 1

e In this example, w =12z
e Therefore, X’ =x/2,y=y/2,277=0

KAIST

Normalized Perspective

¢ As In the orthographic case, we map to
normalized device coordinates

left

23 KAIST

24

NDC Perspective Matrix

i 1 [_2near —(right +left)
WX right —left 0 right —left
' 2-near —(top +bottom)
wy — 0 top—bottom top—bottom
' far+near
Wz 0 0 far —near
| W 0 0 1

—2-far-near

0
0

far—near

0

- N << X

e The values of left, right, top, and bottom are specified at the
near depth. Let’s try some sanity checks:

X = left
= X =
Z =near
X =right ,
=X =
Z =near

2-nearleft _ near(right +left)

right —left right —left _ —near _ _a]
near ha
2-nearright near(right +left)
right —left right —left _ near _ 1
near near

KAIST

25

NDC Perspective Matrix

!

WX

/

wy

/

"'V
W

2-near
right —left

0
0
0

0 —(right +left)
right —left
2.near —(top +bottom)
top —bottom top—bottom
0 far+near
far—near
0 1

0
0

—2-far-near

far—near

0

- N << X

e The values of left, right, top, and bottom are specified at the

near depth. Let’s try some sanity checks:

z=far => 7' =

Z=hear= 27 =

=1

far+near , —2-far-near far (far —near
far far—near + far—near W
far far
far+near , —2-far-near L
near.far—near + far—near __ %
near
near

= 1

KAIST

Perspective in OpenGL

e OpenGL provides the following function to define
perspective transformations:

void glFrustum(double /eft, double right,
double bottom, double top,
double near, double far);

e Some think that using glFrustum() is nonintuitive.
So OpenGL provides a function with simpler, but
less general capabilities

void gluPerspective(double vertfov, double aspect,
double near, double far);

26 KAIST

gluPerspective()

-aspect * near * tan(vert fov/2)

L aspect *near S tangert pvr2) Simple “camera-
ﬁi‘::m__ like” model
L hxﬁth"““‘ near *tan(vert fov/2)
e Can only sp_eC|fy
PR symmetric
vert fov N T T
/Q\\azb frustums
~_near * tan(vert fov/2)

e Substituting the extents into glFrustum()

27 KAIST

gluPerspective()

-aspect * near * tan(vert fov/2)

| aspect * near * tanvert fov2) Simple “camera-
T T like” model
a:::,‘a:!:xh""‘“‘ near *tan(vert fov/2)
Nugy iy in Can only specify
~ L T .
P symmetric

vert foy. Ny iny NNy
/MQQE frustums
~_near * tan(vert fov/2)

e Substituting the extents into glFrustum()

— r _Corm)
WX aspei:t 0 O O X
w'l | 0 COTefev) 0 0o |V
a0 f _2far.
Wz 0 0 farnear farnear || <
| W 0 0 1 0 |1

28 KAIST

Examgle INn the Skeleton Codes
of PA

void reshape(int w, int h)

{

29

width =w; height = h;
glViewport(0, O, width, height);

glMatrixMode(GL_PROJECTION); I/l Select The Projection Matrix
glLoadldentity(); /l Reset The Projection Matrix

// Define perspective projection frustum

double aspect = width/double(height);

gluPerspective(45, aspect, 1, 1024),
glMatrixMode(GL_MODELVIEW); I/l Select The Modelview Matrix

glLoadldentity(); /l Reset The Projection Matrix

KAIST

30

Class Objectives were:

e KNnow camera setup parameters

e Understand viewing and projection
processes

KAIST

31

Homework

e Suggested reading:
e Ch. 12, “Data Structure for Graphics”

e Watch SIGGRAPH Videos
e Go over the next lecture slides

KAIST

32

PA3

e PA2: perform the transformation at the modeling
space

e PA3: perform the transformation at the viewing

space
KAIST

33

Next Time

e Interaction

KAIST

