
CS380: Computer Graphics
Viewing Transformation

Sung-Eui Yoon
(윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/CG/

2

Class Objectives (Ch. 7)
● Know camera setup parameters
●Understand viewing and projection

processes

3

Viewing Transformations
●Map points from world spaces to eye

space
● Can be composed from rotations and

translations

4

●Goal: specify position and orientation of our
camera
● Defines a coordinate frame for eye space

Viewing Transformations

5

“Framing” the Picture
● A new camera coordinate

● Camera position at the origin
● Z-axis aligned with the view direction
● Y-axis aligned with the up direction

●More natural to think of camera as an
object positioned in the world frame

6

Viewing Steps
●Rotate to align the two coordinate frames

and, then, translate to move world space
origin to camera’s origin

7

An Intuitive Specification
● Specify three quantities:

● Eye point (e) - position of the camera
● Look-at point (p) - center of the image
● Up-vector () - will be oriented upwards in

the image
au


8

Deriving the Viewing
Transformation
● First compute the look-at vector and

normalize

● Compute right vector and normalize
● Perpendicular to the look-at and up vectors

● Compute up vector
● is only approximate direction
● Perpendicular to right and look-at vectors

epl 


l
ll 



ˆ

aulr


 r
rr 



ˆ

au


lru ˆˆˆ 

9

Rotation Component
● Map our vectors to the cartesian coordinate axes

● To compute we invert the matrix on the right
● This matrix M is orthonormal (or orthogonal) – its rows are

orthonormal basis vectors: vectors mutually orthogonal
and of unit length

● Then,
● So,

  vRlur
100
010
001

ˆˆˆ 
















vR

T-1 MM 




















t

t

t

l
u
r

R
ˆ

ˆ
ˆ

v

10

Translation Component
● The rotation that we just derived is specified about

the eye point in world space
● Need to translate all world-space coordinates so that the

eye point is at the origin
● Composing these transformations gives our viewing

transform, V
ev

tt ew   TR



































































 

1000
ˆ
ˆ
ˆ

ˆ
ˆ
ˆ

1000
100
010
001

1000
0ˆˆˆ
0ˆˆˆ
0ˆˆˆ

el
eu
er

l
u
r

e
e
e

lll
uuu
rrr

z

y

x

zyx

zyx

zyx

ev TRV

Transform a world-space point into a point in the eye-space

11

Viewing Transform in OpenGL
●OpenGL utility (glu) library provides a

viewing transformation function:

gluLookAt (double eyex, double eyey, double eyez,
double centerx, double centery, double centerz,
double upx, double upy, double upz)

● Computes the same transformation that we
derived and composes it with the current matrix

12

Example in the Skeleton Codes
of PA2
void setCamera ()
{ …
// initialize camera frame transforms

for (i=0; i < cameraCount; i++)
{
double* c = cameras[i];
wld2cam.push_back(FrameXform());
glPushMatrix();
glLoadIdentity();
gluLookAt(c[0],c[1],c[2], c[3],c[4],c[5], c[6],c[7],c[8]);
glGetDoublev(GL_MODELVIEW_MATRIX, wld2cam[i].matrix());
glPopMatrix();
cam2wld.push_back(wld2cam[i].inverse());

}
….
}

13

Projections
●Map 3D points in eye space to 2D points in

image space

● Two common methods
● Orthographic projection
● Perspective projection

14

Orthographic Projection
● Projects points along lines parallel to z-axis

● Also called parallel projection
● Used for top and side views in drafting and

modeling applications
● Appears unnatural due to lack of

perspective foreshortening

Notice that the parallel lines
of the tiled floor remain

parallel after orthographic
projection!

15

Orthographic Projection
● The projection matrix for orthographic projection

is very simple

● Next step is to convert points to NDC





























































1
z
y
x

1000
0000
0010
0001

1
z
y
x

16

View Volume and Normalized
Device Coordinates
●Define a view volume
● Compose projection with a scale and a

translation that maps eye coordinates to
normalized device coordinates

17

Orthographic Projections to NDC

Some sanity checks:














































































1
z
y
x

1000
00

00
00

1
z
y
x

nearfar
near)(far

nearfar
2

bottomtop
bottom)(top

bottomtop
2

leftright
left)(right

leftright
2

1xleftx leftright
leftright

leftright
leftright

leftright
left2  








1xrightx leftright
leftright

leftright
leftright

leftright
right2  








Scale the z
coordinate in
exactly the same
way .Technically,
this coordinate is
not part of the
projection. But,
we will use this
value of z for
other purposes

18

Orthographic Projection in
OpenGL
● This matrix is constructed by the following

OpenGL call:
void glOrtho(double left, double right,

double bottom, double top,
double near, double far);

● 2D version (another GL utility function):
void gluOrtho2D(double left, GLdouble right,

double bottom, GLdouble top);

, which is just a call to glOrtho() with near = -1
and far = 1

19

Perspective Projection
● Artists (Donatello, Brunelleschi, Durer, and Da Vinci) during

the renaissance discovered the importance of perspective for
making images appear realistic

● Perspective causes objects nearer to the viewer to appear
larger than the same object would appear farther away

● Homogenous coordinates allow perspective projections using
linear operators

20

Signs of Perspective
● Lines in projective space always intersect

at a point

21

Perspective Projection

z
ydys 

22

Perspective Projection Matrix
● The simplest transform for perspective

projection is:

●We divide by w to make the fourth
coordinate 1
● In this example, w = z
● Therefore, x’ = x / z, y’ = y / z, z’ = 0





























































10100
0000
0010
0001

z
y
x

w
zw
yw
xw

23

● As in the orthographic case, we map to
normalized device coordinates

Normalized Perspective

NDC

24

NDC Perspective Matrix

● The values of left, right, top, and bottom are specified at the
near depth. Let’s try some sanity checks:
















































































1
z
y
x

0100
00

00
00

w
zw
yw
xw

nearfar
nearfar2

nearfar
nearfar
bottomtop
bottom)(top

bottomtop
near2

leftright
left)(right

leftright
near2

1
near

x
nearz
leftx

near
nearleftright

)leftright(near
leftright
leftnear2














1
near

x
nearz
rightx

near
nearleftright

)leftright(near
leftright
rightnear2






 





25

NDC Perspective Matrix

● The values of left, right, top, and bottom are specified at the
near depth. Let’s try some sanity checks:
















































































1
z
y
x

0100
00

00
00

w
zw
yw
xw

nearfar
nearfar2

nearfar
nearfar
bottomtop
bottom)(top

bottomtop
near2

leftright
left)(right

leftright
near2

1
far

farzfarz far
nearfar
nearfar2

nearfar
nearfar

nearfar
)nearfar(far




 








1
near

nearznearz near
nearfar
nearfar2

nearfar
nearfar

nearfar
)farnear(near




 








26

Perspective in OpenGL
● OpenGL provides the following function to define

perspective transformations:
void glFrustum(double left, double right,

double bottom, double top,
double near, double far);

● Some think that using glFrustum() is nonintuitive.
So OpenGL provides a function with simpler, but
less general capabilities
void gluPerspective(double vertfov, double aspect,

double near, double far);

27

● Substituting the extents into glFrustum()

gluPerspective()

Simple “camera-
like” model

Can only specify
symmetric
frustums

28

● Substituting the extents into glFrustum()

gluPerspective()





































































1
z
y
x

0100
00

00)(COT0
000

w
zw
yw
xw

nearfar
nearfar2

nearfar
nearfar

2
vertfov

aspect
)(COT 2

vertfov

Simple “camera-
like” model

Can only specify
symmetric
frustums

29

Example in the Skeleton Codes
of PA2

void reshape(int w, int h)
{
width = w; height = h;
glViewport(0, 0, width, height);

glMatrixMode(GL_PROJECTION); // Select The Projection Matrix
glLoadIdentity(); // Reset The Projection Matrix
// Define perspective projection frustum
double aspect = width/double(height);

gluPerspective(45, aspect, 1, 1024);
glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix

glLoadIdentity(); // Reset The Projection Matrix
}

30

Class Objectives were:
● Know camera setup parameters
●Understand viewing and projection

processes

31

Homework
● Suggested reading:

● Ch. 12, “Data Structure for Graphics”

●Watch SIGGRAPH Videos
●Go over the next lecture slides

32

PA3

● PA2: perform the transformation at the modeling
space

● PA3: perform the transformation at the viewing
space

33

Next Time
● Interaction

