
CS380: Computer Graphics
Interacting with a 3D World

Sung-Eui Yoon
(윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/CG/

2

Announcement
●Mid-term exam

● 4:00pm ~ 5:40pm, Apr-22 (Tue.)

3

Class Objectives
●Read a mesh representation
●Understand a selection method and a

virtual-trackball interface
●Understand the modeling hierarchy

4

●How do we specify 3D objects?
● Simple mathematical functions, z = f(x,y)
● Parametric functions, (x(u,v), y(u,v), z(u,v))
● Implicit functions, f(x,y,z) = 0

● Build up from simple primitives
● Point – nothing really to see
● Lines – nearly see through
● Planes – a surface

Primitive 3D

5

Simple Planes
● Surfaces modeled as connected planar

facets
● N (>3) vertices, each with 3 coordinates
● Minimally a triangle

6

Specifying a Face
● Face or facet

Face [v0.x, v0.y, v0.z] [v1.x, v1.y, v1.z] … [vN.x, vN.y, vN.z]

● Sharing vertices via indirection
Vertex[0] = [v0.x, v0.y, v0.z]

Vertex[1] = [v1.x, v1.y, v1.z]

Vertex[2] = [v2.x, v2.y, v2.z]

:

Vertex[N] = [vN.x, vN.y, vN.z]

Face v0, v1, v2, … vN

v0

v1

v2

v3

7

Vertex Specification
● Where

● Geometric coordinates [x, y, z]

● Attributes
● Color values [r, g, b]
● Texture Coordinates [u, v]

● Orientation
● Inside vs. Outside
● Encoded implicitly in ordering

● Geometry nearby
● Often we’d like to “fake” a more complex shape than our true

faceted (piecewise-planar) model
● Required for lighting and shading in OpenGL

8

Normal Vector
● Often called normal, [nx, ny, nz]

● Normal to a surface is a vector perpendicular to
the surface
●Will be used in illumination

●
● Normalized:

2
z

2
y

2
x

zyx

nnn

]n,n,n[n̂




9

Drawing Faces in OpenGL
glBegin(GL_POLYGON);
foreach (Vertex v in Face) {
glColor4d(v.red, v.green, v.blue, v.alpha);
glNormal3d(v.norm.x, v.norm.y, v.norm.z);
glTexCoord2d(v.texture.u, v.texture.v);
glVertex3d(v.x, v.y, v.z);

}
glEnd();

● Heavy-weight model
● Attributes specified for every vertex

● Redundant
● Vertex positions often shared by at least 3 faces
● Vertex attributes are often face attributes (e.g. face

normal)

10

Decoupling Vertex and Face
Attributes via Indirection

● Works for many cases
● Used with vertex array or vertex buffer objects in

OpenGL

● Exceptions:
● Regions where the surface changes materials
● Regions of high curvature (a crease)

11

3D File Formats
● MAX – Studio Max
● DXF – AutoCAD

● Supports 2-D and 3-D; binary

● 3DS – 3D studio
● Flexible; binary

● VRML – Virtual reality modeling language
● ASCII – Human readable (and writeable)

● OBJ – Wavefront OBJ format
● ASCII
● Extremely simple
● Widely supported

12

OBJ File Tokens
● File tokens are listed below

some text
Rest of line is a comment

v float float float
A single vertex’s geometric position in space

vn float float float
A normal

vt float float
A texture coordinate

13

OBJ Face Varieties
f int int int ... (vertex only)

or

f int/int int/int int/int . . . (vertex & texture)

or

f int/int/int int/int/int int/int/int … (vertex,
texture, & normal)

● The arguments are 1-based indices into the
arrays
● Vertex positions
● Texture coordinates
● Normals, respectively

14

OBJ Example
● Vertices followed by faces

● Faces reference previous
vertices by integer index

● 1-based

A simple cube
v 1 1 1
v 1 1 -1
v 1 -1 1
v 1 -1 -1
v -1 1 1
v -1 1 -1
v -1 -1 1
v -1 -1 -1
f 1 3 4
f 5 6 8
f 1 2 6
f 3 7 8
f 1 5 7
f 2 4 8

15

OBJ Sources
● Avalon – Viewpoint

(http://avalon.viewpoint.com/)
old standards

● 3D Café –
(http://www.3dcafe.com/asp/meshes.asp)
Nice thumbnail index

● Others
● Most modeling programs will export .OBJ files
● Most rendering packages will read in .OBJ files

16

Picking and Selection
● Basic idea: Identify objects selected by the user

● Click-selection: select one object at a time
● Sweep-selection: select objects within a bounding

rectangle

Demo

17

Picking and Selection

● Several ways to implement selection:
● Find screen space bounding boxes contained in pick

region
● Compute a pick ray and ray trace to find intersections
● OpenGL selection buffers
● Render to back buffer using colors that encode object

IDs and return ID under pick point

18

Selection with the Back Buffer
● Selects only objects that are

visible
● Render objects to back buffer

with color that encodes ID
● Use glReadPixels() to read the

pixel at the pick point
● Back buffer is never seen

19

An Example of Reading the Back
Buffer
void onMouseButton(int button, int state, int x, int y)
{ ...
if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)

{
printf("Left mouse click at (%d, %d)\n", x, y);
selectMode = 1;
display();
glReadBuffer(GL_BACK);
unsigned char pixel[3];
glReadPixels(x, y, 1, 1, GL_RGB, GL_UNSIGNED_BYTE, pixel);
printf("pixel = %d\n", unmunge(pixel[0],pixel[1],pixel[2]));
selectMode = 0;

}
…
}

20

Buffer Operations in OpenGL

• glReadBuffer (mode)
• GL_FRONT, GL_BACK, etc.

• glReadPixels(x, y, w, h, pixel_format, data_type, * buffers)
• Pixel_format: GL_RGB, GL_RGBA, GL_RED, etc.
• Data_type: GL_UNSIGNED_BYTE, GL_FLOAT, etc.

• Other related APIs
• glDrawPixels

21

Interaction Paradigms
● Can move objects or camera

● Object moving is most intuitive if the object
“sticks” to the mouse while dragging

22

Interaction Paradigms
●Move w.r.t. to camera frame

● Pan – move in plane perpendicular to view
direction

● Dolly – move along the view direction
● Zoom - looks like dolly: objects get bigger, but

position remains fixed
● Rotate

●up/down controls elevation angle
●left/right controls azimuthal angle

● Roll – spin about the view direction
● Trackball – can combine rotate and roll

23

Interaction Paradigms
● Move w.r.t to modeling (or world) frame

● Maya combines both
● Presents a frame where you can drag

w.r.t the world axes
● Dragging origin moves w.r.t. to camera

frame

24

Interaction - Trackball
● A common UI for manipulating objects
● 2 degree of freedom device
● Differential behavior provides a intuitive rotation

specification

Trackball demo

25

A Virtual Trackball
● Imagine the viewport as floating above, and just

touching an actual trackball
● You receive the coordinates in screen space of the

MouseDown() and MouseMove() events
● What is the axis of rotation?
● What is the angle of rotation?

26

Computing the Rotation

a

● Construct a vector from the center of rotation of the
virtual trackball to the point of the MouseDown() event

● Construct a 2nd vector from the center of rotation for
a given MouseMove() event

● Normalize , and , and then compute

● Then find the and construct

b


a

b


a
aâ 



b
bb̂ 



 b̂âaxis 
1 ˆˆangle cos (a b) 

axis

axis
axis

Rotate(angle,)R



a


27

Transformation Hierarchies

● Many models are
composed of independent
moving parts

● Each part defined in its
own coordinate system
● Compose transforms to

position and orient the
model parts

● A simple “One-chain”
example

http://www.imanishi.com

28

Code Example (Take One)
public void Draw() {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();
gluLookat(0, 0,-60, 0,0,0, 0,1,0); // world-to-camera transform

glColor3d(0,0,1);
glRotated(-90, 1, 0, 0); // base-to-world transform
Draw(Lamp.BASE);
Draw(Lamp.BODY);
Draw(Lamp.NECK);
Draw(Lamp.HEAD);
glFlush();

}

29

Code Example (Take Two)
public void Draw() {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();
glTranslated(0.0, 0.0, -60.0); // world-to-view transform
glColor3d(0,0,1);
glRotated(-90, 1, 0, 0); // base-to-world transform
Draw(Lamp.BASE);
glTranslated(0,0,2.5); // body-to-base transform
Draw(Lamp.BODY);
glTranslated(12,0,0); // neck-to-body transform
Draw(Lamp.NECK);
glTranslated(12,0,0); // head-to-neck transform
Draw(Lamp.HEAD);
glFlush();

}

30

Code Example (Take Three)
public void Draw() {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();
glTranslated(0.0, -12.0, -60.0); // world-to-view transform
glColor3d(0,0,1);
glRotated(-90, 1, 0, 0); // base-to-world transform
Draw(Lamp.BASE);
glTranslated(0,0,2.5); // body-to-base transform
glRotated(-30, 0, 1, 0); // rotate body at base pivot
Draw(Lamp.BODY);
glTranslated(12,0,0); // neck-to-body transform
glRotated(-115, 0, 1, 0); // rotate neck at body pivot
Draw(Lamp.NECK);
glTranslated(12,0,0); // head-to-neck transform
glRotated(180, 1, 0, 0);// rotate head at neck pivot
Draw(Lamp.HEAD);
glFlush();

}

31

Model Hierarchies
● Model parts are nodes and

transforms are edges

● What transform is applied to the
head part to get it into world
coordinates?

● Suppose that you’d like to rotate the
Neck joint at the point where it
meets the Body. Then what is the
Head’s transform to world space?

Head

Neck

Body

Base
base
world

tt
1 wm T 

body
base

t
1

t
2 mm T 

neck
body

t
2

t
3 mm T 

head
neck

t
3

t
4 mm T 

head
neck

neck
body

body
base

base
world

tt
4 wm TTTT 

head
neck

neck
body

body
base

base
world

tt
4

neck
body

t
2

t
3

wm
mm

RTTTT
RT








32

Class Objectives were:
●Read a mesh representation
●Understand a selection method and a

virtual-trackball interface
●Understand the modeling hierarchy

33

Program Assignment 4
●Use the previous skeleton codes

34

Reading Assignment
●Read Chapter “A Full Graphics Pipeline”

