
CS380: Computer Graphics
Clipping and Culling

Sung-Eui Yoon
(윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/CG/

2

Class Objectives
●Understand clipping and culling
●Understand view-frustum, back-face

culling, and hierarchical culling methods
● Know various possibilities to perform

culling and clipping in the rendering
pipeline

3

Culling and Clipping
● Culling

● Throws away entire objects and primitives that
cannot possibly be visible

● An important rendering optimization (esp. for
large models)

● Clipping
● “Clips off” the visible portion of a primitive
● Simplifies rasterization
● Also, used to create “cut-away” views of a

model

4

Culling Example

Power plant model
(12 million triangles)

5

Culling Example

Full model
12 Mtris

View frustum culling
10 Mtris

Occulsion culling
1 Mtris

6

● Implicit equation for line (plane):

● If is normalized then d gives the distance of the
line (plane) from the origin along

Lines and Planes

n̂

d

(0,0)

x y

x y

n x n y d 0

x

[n n d] y 0 l p 0

1

n

n

7

● Lines (planes) partition 2D (3D)
space:
● Positive and negative half-spaces

● The intersection of negative half-
spaces defines a convex region

Lines and Planes

n̂

d

(0,0)

l p 0

l p 0

8

Testing Objects for Containment

Outside Straddling Inside

9

Conservative Testing

Outside

r
c

l c r
Indeterminate
r l c r

r
c

Inside
l c r

r
c

● Use cheap, conservative bounds for trivial cases
● Can use more accurate, more expensive tests for

ambiguous cases if needed

10

Hierarchical Culling
● Bounding volume hierarchies accelerate culling by

rejecting/accepting entire sub-trees at a time

● Bounding volume hierarchies (BVHs)
● Object partitioning hierarchies
● Uses axis-aligned bounding boxes

A BVH

11

Hierarchical Culling
● Simple algorithm:

while(node is indeterminate) recurse on
children

not visited
visited

Inside Indeterminate

Indeterminate

Indeterminate OutsideInsideInside

12

View Frustum Culling
● Test objects against planes defining view

frustum
●How do you compute them?

●Other planes can be computed similarly

-1 1
1

-1

M

l [1 0 1]

13

Back-Face Culling
● Special case of occlusion - convex self-

occlusion
● For closed objects (has well-defined inside and

outside) some parts of the surface must be
blocked by other parts of the surface

● Specifically, the backside of the object is
not visible

14

Face Plane Test
● Compute the plane for the face:

● Cull if eye point in the negative half-space

1 0 2 0n (v v) (v v)

0v

1v

2v

0d n v

15

Back-Face Culling in OpenGL

if (cull):
glFrontFace(GL_CCW) # define winding order
glEnable(GL_CULL_FACE) # enable Culling
glCullFace(GL_BACK) # which faces to cull

else:
glDisable(GL_CULL_FACE)

● Can cull front faces or back faces
● Back-face culling can sometimes double

performance

You can also do front-face culling!

16

Clipping a Line Segment
against a Line
● First check endpoints against the plane

● If they are on the same side, no clipping is
needed

● Interpolate to get new point

● Vertex attributes interpolated the same
way

0p

1p

p

l

0 1 0p p t(p p) l p 0

0 1 0

0

1 0

l (p t(p p)) 0

(l p)
t
l (p p)

17

Clipping a Polygon against a
Line

● Traverse edges
● Keep edges that are

entirely inside
● Create new point when

we exit
● Throw away edges

entirely outside
● Create new point and

new edge when we
enter

18

Clipping against a Convex
Region
●Sutherland-Hodgman

● Just clip against one edge at
a time

19

Outcodes
● The Cohen-Sutherland

clipping algorithm uses
outcodes to quickly
determine the visibility of a
primitive

● An outcode is created for
each vertex
● It is a bit vector with a bit

set for each plane the vertex
is outside of

●Works for any convex
region

20

Outcode for Lines
(outcode1 OR outcode2) == 0

line segment is inside

(outcode1 AND outcode2) != 0
line segment is totally outside

(outcode1 AND outcode2) == 0
line segment potentially crosses clip region

at planes indicated by set bits in

(outcode1 XOR outcode2)

● False positive
● Some line segments that are classified as potentially

crossing the clip region actually don’t

21

Outcodes for Triangles
Combine outcodes from vertices

(outcode1 OR outcode2 OR outcode3) == 0
triangle is inside

(outcode1 AND outcode2 AND outcode3) != 0
triangle is outside

(outcode1 AND outcode2 AND outcode3) == 0
triangle potentially crosses clip region

22

Clipping in the Pipeline

Clip space

23

View Frustum Clipping
● Points in projective space need to be clipped

before projection
● Primitives that straddle the z=0 plane “flip”

around infinity when projected

eye z 0

near plane

view frustum
project then

draw gives you
this

we don’t want
to see this part

clipped point

24

Clipping in the Clip Space
● NDC simplify view frustum clipping
● Clip after applying projection matrix, but before

the divide by w
● clip coordinates

● Easy in/out test and interpolation

-1 1
x

w

w 1

w xw x
w x w

xl
x

i i i

0 0

0 0 1 1

l [1 1 0]

v [x w 1]

w x
t
(w x) (w x)

 T0v

1v

25

Culling and Clipping in the
Rendering Pipeline

View frustum culling

Back-face culling done in setup phase
of rasterization

View frustum clipping and
back-face culling can be done here

26

Class Objectives were:
●Understand clipping and culling
●Understand view-frustum, back-face

culling, and hierarchical culling methods
● Know various possibilities to perform

culling and clipping in the rendering
pipeline

27

Reading Assignment
●Read the chapter “Raster Algorithms”

28

Next Time
●Triangulating a polygon
●Rasterizing triangles
●Interpolating parameters

