CS380: Computer Graphics Triangle Rasterization

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/CG/

Class Objectives (Ch. 8)

- Understand triangle rasterization using edge-equations
- Understand mechanics for parameter interpolations
- Realize benefits of incremental algorithms

Coordinate Systems

Primitive Rasterization

 Rasterization converts vertex representation to pixel representation

- Computes which pixels (samples) belong to a primitive
- Parameter interpolation
 - Computes parameters at covered pixels from parameters associated with primitive vertices

Coverage Determination

- Coverage is a 2D sampling problem
- Possible coverage criteria:
 - Distance of the primitive to sample point (often used with lines)
 - Percent coverage of a pixel (used to be popular)
 - Sample is inside the primitive (assuming it is closed)

- Triangles are simple
 - Simple representation for a surface element (3 points or 3 edge equations)
 - Triangles are linear (makes computations

$$T = (\dot{v}_0, \dot{v}_1, \dot{v}_2)$$

$$T = (e_0, e_1, e_2)$$

- Triangles are convex
- What does it mean to be a convex?

An object is convex if and only if any line segment connecting two points on ts boundary is contained entirely within the object or one of its boundaries

- Triangles are convex
- Why is convexity important?
 - Regardless of a triangle's orientation on the screen a given scan line will contain only a single segment or span of that triangle
 - Simplify rasterization processes

Arbitrary polygons can be decomposed into

triangles

- Decomposing a convex n-sided polygon is trivial
 - Suppose the polygon has ordered vertices {v₀, v₁, ... v_n}
 - It can be decomposed into triangles {(v₀, v₁, v₂), {v₀, v₂, v₃), (v₀, v_i, v_{i+1}), ... (v₀, v_{n-1}, v_n)}
- Decomposing a non-convex polygon is non-trivial
 - Sometimes have to introduce new vertices

- Triangles can approximate any 2-dimensional shape (or 3D surface)
 - Polygons are a locally linear (planar) approximation
- Improve the quality of fit by increasing the number edges or faces

- Walk along edges and process one scanline at a time; also called edge walk method
- Rasterize spans between edges

- Walk along edges and process one scanline at a time
- Rasterize spans between edges

- Walk along edges and process one scanline at a time
- Rasterize spans between edges

- Walk along edges and process one scanline at a time
- Rasterize spans between edges

- Walk along edges and process one scanline at a time
- Rasterize spans between edges

- Walk along edges and process one scanline at a time
- Rasterize spans between edges

Scanline Rasterization

• Advantages:

- Can be made quite fast
- Low memory usage for small scenes
- Do not need full 2D z-buffer (can use 1D zbuffer on the scanline)

• Disadvantages:

- Does not scale well to large scenes
- Lots of special cases

Rasterizing with Edge Equations

- Compute edge equations from vertices
- Compute interpolation equations from vertex parameters
- Traverse pixels evaluating the edge equations
- Draw pixels for which all edge equations are positive
- Interpolate parameters at pixels

Edge Equation Coefficients

 The cross product between 2 homogeneous points generates the line between them

$$E(x,y) = Ax + By + C$$

 A pixel at (x,y) is "inside" an edge if E(x,y)>0

Shared Edges

Suppose two triangles share an edge.
 Which covers the pixel when the edge passes through the sample (E(x,y)=0)?

Both

- Pixel color becomes dependent on order of triangle rendering
- Creates problems when rendering transparent objects -"double hitting"
- Neither
 - Missing pixels create holes in otherwise solid surface
- We need a consistent tie-breaker!

Shared Edges

• A common tie-breaker:

bool
$$t = \begin{cases} A > 0 & \text{if } A \neq 0 \\ B > 0 & \text{ot herwise} \end{cases}$$

 Coverage determination becomes if(E(x,y) > 0 | | (E(x,y)==0 && t)) pixel is covered

Shared Vertices

- Use "inclusion direction" as a tie breaker
- Any direction can be used

 Snap vertices to subpixel grid and displace so that no vertex can be at the pixel center

Interpolating Parameters

- Specify a parameter, say redness (r) at each vertex of the triangle
 - Linear interpolation creates a planar function

$$r(x,y) = Ax + By + C$$

Solving for Linear Interpolation **Equations**

Given the redness of the three vertices, we can set up the

$$\begin{bmatrix} A_r & B_r & C_r \end{bmatrix} = \begin{bmatrix} r_0 & r_1 & r_2 \end{bmatrix}$$

Triangle Area

Area =
$$\frac{1}{2}$$
det $\begin{bmatrix} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \\ 1 & 1 & 1 \end{bmatrix}$
= $\frac{1}{2}$ (($x_1y_2 - x_2y_1$) - ($x_0y_2 - x_2y_0$) + ($x_0y_1 - x_1y_0$))
= $\frac{1}{2}$ ($C_0 + C_1 + C_2$)

- Area = 0 means that the triangle is not visible
- Area < 0 means the triangle is back facing:
 - Reject triangle if performing back-face culling
 - Otherwise, flip edge equations by multiplying by -1

Interpolation Equation

 The parameter plane equation is just a linear combination of the edge equations

$$\begin{bmatrix} A_r & B_r & C_r \end{bmatrix} = \frac{1}{2 \cdot \text{area}} \begin{bmatrix} r_0 & r_1 & r_2 \end{bmatrix} \begin{bmatrix} e_0 \\ e_1 \\ e_2 \end{bmatrix}$$

Z-Buffering

- When rendering multiple triangles we need to determine which triangles are visible
- Use z-buffer to resolve visibility
 - Stores the depth at each pixel
- Initialize z-buffer to 1 (far value)
 - Post-perspective z values lie between 0 and 1
- Linearly interpolate depth (z_{tri}) across triangles
- If z_{tri}(x,y) < zBuffer[x][y] write to pixel at (x,y) zBuffer[x][y] = z_{tri}(x,y)

A simple three dimensional scene

Z-buffer representation

image from wikipedia.com

Traversing Pixels

- Free to traverse pixels
 - Edge and interpolation equations can be computed at any point
- Try to minimize work
 - Restrict traversal to primitive bounding box
 - Hierarchical traversal
 - Knock out tiles of pixels (say 4x4) at a time
 - Test corners of tiles against equations
 - Test individual pixels of tiles not entirely inside or outside

Incremental Algorithms

 Some computation can be saved by updating the edge and interpolation equations incrementally:

$$E(x,y) = Ax + By + C$$

$$E(x + \Delta, y) = A(x + \Delta) + By + C$$

$$= E(x,y) + A \cdot \Delta$$

$$E(x,y + \Delta) = Ax + B(y + \Delta) + C$$

$$= E(x,y) + B \cdot \Delta$$

 Equations can be updated with a single addition!

Triangle Setup

- Compute edge equations
 - 3 cross products
- Compute triangle area
 - A few additions
- Cull zero area and back-facing triangles and/or flip edge equations
- Compute interpolation equations
 - Matrix/vector product per parameter

Massive Models

100,000,000 primitives 1,000,000 pixels

100 visible primitives/pixel

- Cost to render a single triangle
 - Specify 3 vertices
 - Compute 3 edge equations
 - Evaluate equations one

St. Mathew models consisting of about 400M triangles (Michelangelo Project)

Multi-Resolution or Levels-of-Detail (LOD) Techniques

- Basic idea
 - Render with fewer triangles when model is farther from viewer

- Methods
 - Polygonal simplification

Polygonal Simplification

 Method for reducing the polygon count of mesh

Static LODs

- Pre-compute discrete simplified meshes
 - Switch between them at runtime
 - Has very low LOD selection overhead

Dynamic Simplification

 Provides smooth and varying LODs over the mesh [Hoppe 97]

1st person's view

3rd person's view

Play video

View-Dependent Rendering [Yoon et al., SIG 05]

Double Eagle Tanker
82 Million triangles

30 Pixels of error

Pentium 4

GeForce Go 6800 Ultra

1GB RAM

What if there are so many objects?

From "cars", a Pixar movie

What if there are so many objects?

From a Pixar movie

Stochastic Simplification of Aggregate Detail Cook et al., ACM SIGGRAPH 2007

Figure 2: Distant views of the plant from Figure 1 with close-ups below: (a) unsimplified, (b) with 90% of its leaves excluded, (c) with area correction, (d) with area and contrast correction.

Occlusion Culling with Occlusion Queries

Render objects visible in previous frame

Known as occlusion representation or occlusion

Occlusion Culling with Occlusion Queries

- Turn off color and depth writes
- Render object bounding boxes with occlusion queries

Occlusion Culling with Occlusion Queries

- Re-enable color writes
- Render newly visible objects

Class Objectives were:

- Understand triangle rasterization using edge-equations
- Understand mechanics for parameter interpolations
- Realize benefits of incremental algorithms

Next Time

- Illumination and shading
- Texture mapping

Homework

- Go over the next lecture slides before the class
- Watch 2 SIGGRAPH videos and submit your summaries before every Tue. class
 - Send an email to cs380ta@gmail.com
 - Just one paragraph for each summary

Any Questions?

- Come up with one question on what we have discussed in the class and submit at the end of the class
 - 1 for already answered questions
 - 2 for typical questions
 - 3 for questions with thoughts or that surprised me

Submit at least four times during the whole semester

