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Class Objectives (Ch. 8)

e Understand triangle rasterization using
edge-equations

e Understand mechanics for parameter
Interpolations

e Realize benefits of incremental algorithms
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Coordinate Systems

model
world Modelview matrix
eye
clip
Divide by w
NDC
Viewport transformation
window
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Primitive Rasterization

e Rasterization converts vertex representation to
pixel representation

e\ o o o

e Coverage determination
e Computes which pixels (samples) belong to a
primitive
e Parameter interpolation

e Computes parameters at covered pixels from
parameters associated with primitive verticggy st



Coverage Determination

e Coverage is a 2D sampling problem

e Possible coverage criteria:

e Distance of the primitive
to sample point
(often used with lines)

e Percent coverage of
a pixel (used to be popular)

e Sample is inside the primitive
(assuming it is closed)
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Why Triangles?

e Triangles are simple

e Simple representation for a surface element
(3 points or 3 edge equations)

e Triangles are linear (makes computations
easier)
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Why Triangles?

e Triangles are convex

e \What does It mean to be a convex?
Co

\/ Non-convex

An object is convex If and only If any line segment
connecting two points on ts boundary is contained
entirely within the object or one of its boundaries
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Why Triangles?

e Triangles are convex

e Why Is convexity important?
e Regardless of a triangle’s orientation on the

screen a given scan line will contain only a
single segment or span of that triangle

e Simplify rasterization processes
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Why Triangles?

e Arbitrary polygons can be decomposed into

triangles . . o
p A
pé
‘ .ﬂ

Convex polygon ™ Non-convex
e Decomposing a convex n-sided polygon is trivial

e Suppose the polygon has ordered vertices {v,, V,, ... V. }
e It can be decomposed into triangles {(v,,Vv,,V,),
{Vo:VoiVs), (Vo VisViiq)s - (Voo V 1, V) F

e Decomposing a non-convex polygon is non-trivial
e Sometimes have to introduce new vertices
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Why Triangles?

e Triangles can approximate any 2-dimensional
shape (or 3D surface)

e Polygons are a locally linear (planar) approximation

e Improve the quality of fit by increasing the
number edges or faces
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Scanline Triangle Rasterizer

e Walk along edges and process one scanline
at a time; also called edge walk method

e Rasterize spans between edges
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Scanline Rasterization

e Advantages:
e Can be made quite fast
e Low memory usage for small scenes
e Do not need full 2D z-buffer (can use 1D z-
buffer on the scanline)
e Disadvantages:
e Does not scale well to large scenes
e Lots of special cases
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Rasterizing with Edge Equations

e Compute edge equations from vertices

e Compute interpolation equations from vertex parameters
e Traverse pixels evaluating the edge equations

e Draw pixels for which all edge equations are positive

e Interpolate parameters at pixels
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Edge Equation Coefficients

e The cross product between 2 homogeneous
points generates the line between them

€=V, XV,
\71 — [XO Yo 1]t X [X1 Y; 1]t
\'/O © — [(yo _y1) (X1_XO) (Xoy1_x1yo)]
A B C

E(x,y) = Ax+By+C

e A pixel at (X,y) Is “Iinside” an edge If
E(X,y)=0
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Shared Edges

e Suppose two triangles share an edge.

triangle 1
Which covers the pixel when the edge T
passes through the sample (E(x,y)=0)?
e Both .
riangle 2

e Pixel color becomes dependent on order of /
triangle rendering

e Creates problems when rendering transparent objects -
“double hitting”

e Neither
e Missing pixels create holes in otherwise solid surface

e \We need a consistent tie-breaker!
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Shared Edges
e

e A common tie-breaker: (A,B) .[iriangle 1

A>0 IfTA=0
B>0 otherwse

|

triangle 2

/

e Coverage determination becomes
If( E(x,y) =0 ]| (E(X,y)==0 && 1))
pixel is covered
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Shared Vertices

e Use “inclusion direction” as a
~ tie breaker

e Any direction can be used

e Snap vertices to subpixel grid
= and displace so that no vertex
can be at the pixel center
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Interpolating Parameters

e Specify a parameter, say redness (r) at
each vertex of the triangle

e Linear interpolation creates a planar function
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Solving for Linear Interpolation

Equations

e Given the redness of the three vertices, we can set up the

following linear system:

[ro I rz]:[Ar Br Cr]

with the solution:

[Ar Br Cr]:[ro [ rz]
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Xo X % ]
Yo Yi Yo
11
(Vi=V¥,) (% —x,)

(X1y2 _X2y1)
(Yo =¥2) (6 =%) (X¥o =XY,)
(yo _y1) (X1_Xo) (Xo}/1_x1yo) |
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Triangle Area

Xo X X |
Area=Jdet|y, VY, Y,
T 1 1

(XY, = XY ) = (X, Yo = %Yo )+ (XY = X¥o))
(G +C+G,)
e Area = 0 means that the triangle is not
visible
e Area < 0 means the triangle is back facing:
e Reject triangle if performing back-face culling
e Otherwise, flip edge equations by multiplying

by -1
25 KAIST
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Interpolation Equation

e The parameter plane equation is just a
linear combination of the edge equations

Ey
I nor]e
=

B -
A B G 2-area

26 KAIST



Z-Buffering

e When rendering multiple triangles we
need to determine which triangles are
visible

e Use z-buffer to resolve visibility
e Stores the depth at each pixel

e Initialize z-buffer to 1 (far value)
e Post-perspective z values lie between O and 1

simple three dimensional scene

e Linearly interpolate depth (z;) across
triangles

o If z,..(X,y) < zBuffer[x][v]
write to pixel at (X,y)

zBuffer[x]ly] = z;i(X.,y)
i KAIST

image from wikipedia.com

Z-buffer representation



Traversing Pixels

e Free to traverse pixels w&

e Edge and interpolation equations can be ba -
computed at any point /&-/\I

e Try to minimize work
e Restrict traversal to primitive bounding box

e Hierarchical traversal

eKnock out tiles of pixels (say 4x4) at a time
eTest corners of tiles against equations

b=t
bt

eTest individual pixels of tiles not entirely
Inside or outside
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Incremental Algorithms

e Some computation can be saved by
updating the edge and interpolation
equations incrementally:

E(x,y)=Ax+By+C
E(x+ A,y)=A(x+A)+By+C
=E(xy)+A-A
E(x,y+A)=Ax+B(y+A)+C
=E(x,y)+B-A

e Equations can be updated with a single
addition!
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Triangle Setup

e Compute edge equations
e 3 cross products

e Compute triangle area
e A few additions

e Cull zero area and back-facing triangles
and/or flip edge equations

e Compute interpolation equations
e Matrix/vector product per parameter
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Massive Models

100,000,000 primitives
1,000,000 pixels
100 visible primitives/pixel

e Cost to render a single triangle
e Specify 3 vertices
e Compute 3 edge equations
e Evaluate equations one

St. Mathew models consisting of
about 400M triangles
(Michelangelo Project)
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Multi-Resolution or Levels-of-
Detail (LOD) Techniques

e Basic i1dea

e Render with fewer triangles when model is
farther from viewer

e Methods
e Polygonal simplification
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Polygonal Simplification

e Method for reducing the polygon count of
me<sh

Edge Collapse
—

C—
Vertex Split
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Static LODs

e Pre-compute discrete simplified meshes
e Switch between them at runtime
e Has very low LOD selection overhead

2,000 faces 10,000 faces 50,000 faces

pop Pop KAIST

Excerpted from Hoppe’s slides




Dynamic Simplification

e Provides smooth and varying LODs over
the mesh [Hoppe 97]

1st person’s view 3 person’s view

Play video
KAIST




View-Dependent Rendering
[Yoon et al., SIG 05]

30 Pixels of
error

Pentium 4

GeForce Go
6800 Ultra

1GB RAM

Double Eagle Tanker
82 Million triangles
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What if there are so many
objects?

From “cars”, a Pixar movie
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What if there are so many
objects?

From a Pixar movie



Stochastic Simplification of
Aggregate Detall
Cook et al., ACM SIGGRAPH 2007 |

Figure 2: Distant views of the plant from Figure 1 with close-ups
below: (a) unsimplified, (b) with 90% of its leaves excluded, (c)
with area correction, (d) with area and contrast correction.
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Occlusion Culling with Occlusion

Queries
e Render objects visible in previous frame

e Known as occlusion representation or occlusion

map

KAIST

40



Occlusion Culling with Occlusion

Queries

e Turn off color and depth writes
e Render object bounding boxes with occlusion

queries
e An occlusion guery returns

the number of visible pixels

ewly visible

KAIST
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Occlusion Culling with Occlusion
Queries

e Re-enable color writes
e Render newly visible objects

€ )
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Class Objectives were:

e Understand triangle rasterization using
edge-equations

e Understand mechanics for parameter
Interpolations

e Realize benefits of incremental algorithms
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Next Time

e Illumination and shading
e Texture mapping
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Homework

e Go over the next lecture slides before the
class

e Watch 2 SIGGRAPH videos and submit your
summaries before every Tue. class
e Send an email to cs380ta@gmail.com

e Just one paragraph for each summary
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Any Questions?

e Come up with one question on what we
have discussed In the class and submit at

the end of the class
e 1 for already answered questions

e 2 for typical questions
e 3 for questions with thoughts or that surprised
me

e Submit at least four times during the whole
semester

KAIST
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