CS380: Computer Graphics
Triangle Rasterization

Sung-Eui Yoon

(=d)

Course URL.:
http://sglab.kaist.ac.kr/~sungeui/CG/

KAIST

Class Objectives (Ch. 8)

e Understand triangle rasterization using
edge-equations

e Understand mechanics for parameter
Interpolations

e Realize benefits of incremental algorithms

KAIST

Coordinate Systems

model
world Modelview matrix
eye
clip
Divide by w
NDC
Viewport transformation
window

KAIST

Primitive Rasterization

e Rasterization converts vertex representation to
pixel representation

e\ o o o

e Coverage determination
e Computes which pixels (samples) belong to a
primitive
e Parameter interpolation

e Computes parameters at covered pixels from
parameters associated with primitive verticggy st

Coverage Determination

e Coverage is a 2D sampling problem

e Possible coverage criteria:

e Distance of the primitive
to sample point
(often used with lines)

e Percent coverage of
a pixel (used to be popular)

e Sample is inside the primitive
(assuming it is closed)

KAIST

Why Triangles?

e Triangles are simple

e Simple representation for a surface element
(3 points or 3 edge equations)

e Triangles are linear (makes computations
easier)

KAIST

Why Triangles?

e Triangles are convex

e \What does It mean to be a convex?
Co

\/ Non-convex

An object is convex If and only If any line segment
connecting two points on ts boundary is contained
entirely within the object or one of its boundaries

KAIST

Why Triangles?

e Triangles are convex

e Why Is convexity important?
e Regardless of a triangle’s orientation on the

screen a given scan line will contain only a
single segment or span of that triangle

e Simplify rasterization processes

KAIST

Why Triangles?

e Arbitrary polygons can be decomposed into

triangles . . o
p A
pé
‘ .ﬂ

Convex polygon ™ Non-convex
e Decomposing a convex n-sided polygon is trivial

e Suppose the polygon has ordered vertices {v,, V,, ... V. }
e It can be decomposed into triangles {(v,,Vv,,V,),
{Vo:VoiVs), (Vo VisViiq)s - (Voo V 1, V) F

e Decomposing a non-convex polygon is non-trivial
e Sometimes have to introduce new vertices

KAIST

Why Triangles?

e Triangles can approximate any 2-dimensional
shape (or 3D surface)

e Polygons are a locally linear (planar) approximation

e Improve the quality of fit by increasing the
number edges or faces

10 KAIST

Scanline Triangle Rasterizer

e Walk along edges and process one scanline
at a time; also called edge walk method

e Rasterize spans between edges

11 KAIST

12

Scanline Triangle Rasterizer

e Walk along edges and process one scanline
at a time

e Rasterize spans between edges

KAIST

13

Scanline Triangle Rasterizer

e Walk along edges and process one scanline
at a time

e Rasterize spans between edges

KAIST

14

Scanline Triangle Rasterizer

e Walk along edges and process one scanline
at a time

e Rasterize spans between edges

KAIST

15

Scanline Triangle Rasterizer

e Walk along edges and process one scanline
at a time

e Rasterize spans between edges

KAIST

16

Scanline Triangle Rasterizer

e Walk along edges and process one scanline
at a time

e Rasterize spans between edges

KAIST

Scanline Rasterization

e Advantages:
e Can be made quite fast
e Low memory usage for small scenes
e Do not need full 2D z-buffer (can use 1D z-
buffer on the scanline)
e Disadvantages:
e Does not scale well to large scenes
e Lots of special cases

17 KAIST

Rasterizing with Edge Equations

e Compute edge equations from vertices

e Compute interpolation equations from vertex parameters
e Traverse pixels evaluating the edge equations

e Draw pixels for which all edge equations are positive

e Interpolate parameters at pixels

18 KAIST

Edge Equation Coefficients

e The cross product between 2 homogeneous
points generates the line between them

€=V, XV,
\71 — [XO Yo 1]t X [X1 Y; 1]t
\'/O © — [(yo _y1) (X1_XO) (Xoy1_x1yo)]
A B C

E(x,y) = Ax+By+C

e A pixel at (X,y) Is “Iinside” an edge If
E(X,y)=0

19 KAIST

Shared Edges

e Suppose two triangles share an edge.

triangle 1
Which covers the pixel when the edge T
passes through the sample (E(x,y)=0)?
e Both .
riangle 2

e Pixel color becomes dependent on order of /
triangle rendering

e Creates problems when rendering transparent objects -
“double hitting”

e Neither
e Missing pixels create holes in otherwise solid surface

e \We need a consistent tie-breaker!

20 KAIST

21

Shared Edges
e

e A common tie-breaker: (A,B) .[iriangle 1

A>0 IfTA=0
B>0 otherwse

|

triangle 2

/

e Coverage determination becomes
If(E(x,y) =0]| (E(X,y)==0 && 1))
pixel is covered

KAIST

22

Shared Vertices

e Use “inclusion direction” as a
~ tie breaker

e Any direction can be used

e Snap vertices to subpixel grid
= and displace so that no vertex
can be at the pixel center

KAIST

23

Interpolating Parameters

e Specify a parameter, say redness (r) at
each vertex of the triangle

e Linear interpolation creates a planar function

KAIST

Solving for Linear Interpolation

Equations

e Given the redness of the three vertices, we can set up the

following linear system:

[ro I rz]:[Ar Br Cr]

with the solution:

[Ar Br Cr]:[ro [rz]

24

Xo X %]
Yo Yi Yo
11
(Vi=V¥,) (% —x,)

(X1y2 _X2y1)
(Yo =¥2) (6 =%) (X¥o =XY,)
(yo _y1) (X1_Xo) (Xo}/1_x1yo) |

det

Xo
Yo

1

X
Y
1

Xo
Yo
1

KAIST

Triangle Area

Xo X X |
Area=Jdet|y, VY, Y,
T 1 1

(XY, = XY) = (X, Yo = %Yo)+ (XY = X¥o))
(G +C+G,)
e Area = 0 means that the triangle is not
visible
e Area < 0 means the triangle is back facing:
e Reject triangle if performing back-face culling
e Otherwise, flip edge equations by multiplying

by -1
25 KAIST

Il
Nl Nl

Interpolation Equation

e The parameter plane equation is just a
linear combination of the edge equations

Ey
I nor]e
=

B -
A B G 2-area

26 KAIST

Z-Buffering

e When rendering multiple triangles we
need to determine which triangles are
visible

e Use z-buffer to resolve visibility
e Stores the depth at each pixel

e Initialize z-buffer to 1 (far value)
e Post-perspective z values lie between O and 1

simple three dimensional scene

e Linearly interpolate depth (z;) across
triangles

o If z,..(X,y) < zBuffer[x][v]
write to pixel at (X,y)

zBuffer[x]ly] = z;i(X.,y)
i KAIST

image from wikipedia.com

Z-buffer representation

Traversing Pixels

e Free to traverse pixels w&

e Edge and interpolation equations can be ba -
computed at any point /&-/\I

e Try to minimize work
e Restrict traversal to primitive bounding box

e Hierarchical traversal

eKnock out tiles of pixels (say 4x4) at a time
eTest corners of tiles against equations

b=t
bt

eTest individual pixels of tiles not entirely
Inside or outside

28 KAIST

Incremental Algorithms

e Some computation can be saved by
updating the edge and interpolation
equations incrementally:

E(x,y)=Ax+By+C
E(x+ A,y)=A(x+A)+By+C
=E(xy)+A-A
E(x,y+A)=Ax+B(y+A)+C
=E(x,y)+B-A

e Equations can be updated with a single
addition!

29 KAIST

Triangle Setup

e Compute edge equations
e 3 cross products

e Compute triangle area
e A few additions

e Cull zero area and back-facing triangles
and/or flip edge equations

e Compute interpolation equations
e Matrix/vector product per parameter

30 KAIST

Massive Models

100,000,000 primitives
1,000,000 pixels
100 visible primitives/pixel

e Cost to render a single triangle
e Specify 3 vertices
e Compute 3 edge equations
e Evaluate equations one

St. Mathew models consisting of
about 400M triangles
(Michelangelo Project)

31 KAIST

Multi-Resolution or Levels-of-
Detail (LOD) Techniques

e Basic i1dea

e Render with fewer triangles when model is
farther from viewer

e Methods
e Polygonal simplification

KAIST

Polygonal Simplification

e Method for reducing the polygon count of
me<sh

Edge Collapse
—

C—
Vertex Split

33 KAIST

Static LODs

e Pre-compute discrete simplified meshes
e Switch between them at runtime
e Has very low LOD selection overhead

2,000 faces 10,000 faces 50,000 faces

pop Pop KAIST

Excerpted from Hoppe’s slides

Dynamic Simplification

e Provides smooth and varying LODs over
the mesh [Hoppe 97]

1st person’s view 3 person’s view

Play video
KAIST

View-Dependent Rendering
[Yoon et al., SIG 05]

30 Pixels of
error

Pentium 4

GeForce Go
6800 Ultra

1GB RAM

Double Eagle Tanker
82 Million triangles

KAIST

What if there are so many
objects?

From “cars”, a Pixar movie

KAIST

What if there are so many
objects?

From a Pixar movie

Stochastic Simplification of
Aggregate Detall
Cook et al., ACM SIGGRAPH 2007 |

Figure 2: Distant views of the plant from Figure 1 with close-ups
below: (a) unsimplified, (b) with 90% of its leaves excluded, (c)
with area correction, (d) with area and contrast correction.

KAIST

Occlusion Culling with Occlusion

Queries
e Render objects visible in previous frame

e Known as occlusion representation or occlusion

map

KAIST

40

Occlusion Culling with Occlusion

Queries

e Turn off color and depth writes
e Render object bounding boxes with occlusion

queries
e An occlusion guery returns

the number of visible pixels

ewly visible

KAIST

41

Occlusion Culling with Occlusion
Queries

e Re-enable color writes
e Render newly visible objects

€)

42 KAIST

Class Objectives were:

e Understand triangle rasterization using
edge-equations

e Understand mechanics for parameter
Interpolations

e Realize benefits of incremental algorithms

43 KAIST

44

Next Time

e Illumination and shading
e Texture mapping

KAIST

Homework

e Go over the next lecture slides before the
class

e Watch 2 SIGGRAPH videos and submit your
summaries before every Tue. class
e Send an email to cs380ta@gmail.com

e Just one paragraph for each summary

45 KAIST

Any Questions?

e Come up with one question on what we
have discussed In the class and submit at

the end of the class
e 1 for already answered questions

e 2 for typical questions
e 3 for questions with thoughts or that surprised
me

e Submit at least four times during the whole
semester

KAIST

46

