CS380: Computer Graphics Texture Mapping

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/CG

Class Objectives (CH. 11)

- Texture mapping overview
- Texture filtering
- Various applications of texture mapping

Texture Mapping

- Requires lots of geometry to fully represent complex shapes of models
- Add details with image representations

The Quest for Visual Realism

Photo-Textures

Texture Maps in OpenGL

- Specify normalized texture coordinates at each of the vertices (u, v)
- Texel indices (s,t) = (u, v) · (width, height)

```
glBindTexture(GL_TEXTURE_2D, texID)
glBegin(GL_POLYGON)
  glTexCoord2d(0,1); glVertex2d(-1,-1);
  glTexCoord2d(1,1); glVertex2d( 1,-1);
  glTexCoord2d(1,0); glVertex2d( 1, 1);
  glTexCoord2d(0,0); glVertex2d(-1, 1);
  glEnd()
```


Wrapping

 The behavior of texture coordinates outside of the range [0,1) is determined by the texture wrap options.

```
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, wrap_mode )
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, wrap_mode )
```


GL_REPEAT

Linear Interpolation of Texture Coordinates

- Simple linear interpolation of u and v over a triangle in a screen space leads to unexpected results
 - Distorted when the triangle's vertices do not have the same depth
 - Perspective-correct interpolation (interpolation in the object space) is implemented

Sampling Texture Maps

Sampling Density Mismatch

 Sampling density in texture space rarely matches the sample density of the texture itself

Oversampling (Magnification)

Undersampling (Minification)

Handling Oversampling

 How do we compute the color to assign to this sample?

Handling Oversampling

- How do we compute the color to assign to this sample?
- Nearest neighbor take the color of the closest texel

Handling Oversampling

- How do we compute the color to assign to this sample?
- Nearest neighbor take the color of the closest texel
- Bilinear interpolation

$$\alpha = \frac{X - X_0}{X_1 - X_0} \qquad \beta = \frac{y - y_0}{y_1 - y_0}$$

$$C = ((1 - \alpha)C_0 + \alpha C_1)(1 - \beta) + ((1 - \alpha)C_2 + \alpha C_3)\beta$$

Undersampling

- Details in the texture tend to pop (disappear and reappear)
 - Mortar (white substances) in the brick
- High-frequency details lead to strange patterns
 - Aliasing

Spatial Filtering

- To avoid aliasing we need to prefilter the texture to remove high frequencies
 - Prefiltering is essentially a spatial integration over the texture
 - Integrating on the fly is expensive: perform integration in a pre-process

Samples and their extents

Proper filtering removes aliasing

MIP Mapping

 MIP is an acronym for the Latin phrase multium in parvo, which means "many in one place"

 Each level is a prefiltered version of the level below resampled at half the frequency

- While rasterizing use the level with the sampling rate closest to the desired sampling rate
 - Can also interpolate between pyramid levels
- How much storage overhead is required?

mip map size =
$$\sum_{i=0}^{\infty} \left(\frac{1}{4}\right)^i = \frac{1}{1-\frac{1}{4}} = \frac{4}{3}$$

Storing MIP Maps

- One convenient method of storing a MIP map is shown below
 - It also nicely illustrates the 1/3 overhead of maintaining the MIP map

Finding the MIP Level

 Use the projection of a pixel in screen into texture space to figure out which level to use

Summed-Area Tables

- Another way performing the prefiltering integration on the fly
- Each entry in the summed area table is the sum of all entries above and to the left:

$$T(x_1, y_1) - T(x_1, y_0) - T(x_0, y_1) + T(x_0, y_0)$$

15

Divide out area $(y_1 - y_0)(x_1 - x_0)$

Summed-Area Tables

- How much storage does a summed-area table require?
- Does it require more or less work per pixel than a MIP map?

 Can be implemented in a fragment shader No Filtering

MIP mapping

Texture Filtering in OpenGL

Automatic creation

```
gluBuild2DMipmaps(GL TEXTURE 2D, GL RGBA, width, height,
                   GL RGBA, GL UNSIGNED BYTE, data)
```

Filtering

```
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG FILTER, filter)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, filter)
```

where filter is:

```
GL NEAREST
GL LINEAR
GL LINEAR MIPMAP LINEAR
GL NEAREST MIPMAP NEAREST
GL NEAREST MIPMAP LINEAR
GL LINEAR MIPMAP NEAREST
```


Uses of Texture Maps

- Texture maps are used to add complexity to a scene
 - Easier to paint or capture an image than geometry
- Model light
- Model geometry, etc

One of key techniques to overcome various problems of rasterization techniques!

Modeling Lighting

Light maps

- Supply the lighting directly
- Good for static environments

Projective textures

- Can be used to simulate a spot light
- Shadow maps

Environment maps

- A representation of the scene around an object
- Good for reflection

Light Maps in Quake

 Light maps are used to store pre-computed illumination

	Texture Maps	Light Maps
Data	RGB	Intensity
Resolution	High	Low

Light map image by Nick Chirkov

Projective Textures

- Treat the texture as a slide in a projector
 - A good model for shading variations due to illumination (cool spotlights)
- Projectors work like cameras in reverse
 - Camera: color of point in scene → color of corresponding pixel
 - Projector: color of pixel → color of corresponding point in the scene

Shadow Maps

Use the depth map in the light view to determine if sample point is visible

Eye

Point in shadow visible to the eye, but not visible to the light

Environment Maps

- Simulate complex mirror-like objects
 - Use textures to capture environment of objects
 - Use surface normal to compute texture coordinates

Environment Maps - Example

T1000 in Terminator 2 from Industrial Light and Magic

Cube Maps

- Maps a viewing direction b and returns an RGB color
 - Use stored texture maps

Cube Maps

- Maps a viewing direction b and returns an RGB color
 - Assume b = (x, y, z),

- Identify a face based on magnitude of x,y,z
- -For the right face, compute texture coord. (u,v)

$$u = (y+x)/(2x)$$

 $v = (z+x)/(2x)$

Environment Maps - Problems

- Expensive to update dynamically
- Not completely accurate
 - One of main reason that Cars (Pixar movie of 2006) used ray tracing

Reflection of swimming pool is wrong

Environment Maps - Problems

- Expensive to update dynamically
- Not completely accurate

One of main reason that Cars (Pixar movie of 2006) used

ray tracing

Modeling Geometry

- Store complex surface details in a texture rather than modeling them explicitly
- Bump maps
 - Modify the existing normal
- Normal maps
 - Replace the existing normal
- Displacement maps
 - Modify the geometry
- Opacity maps and billboards
 - Knock-out portions of a polygon using the alpha channel

Bump Mapping

- Modifies the normal not the actual geometry
 - Texture treated as a heightfield
 - Partial derivatives used to change the normal
 - Causes surface to appear deformed by the heightfield

More Bump Map Examples

Note that silhouette edge of the object not affected!

Normal Mapping

Replaces the normal rather than tweaking

original mesh 4M triangles

simplified mesh 500 triangles

simplified mesh and normal mapping 500 triangles

Displacement Mapping

 Texture maps can be used to actually move surface points

Opacity Maps

RGB channels

Use the alpha channel to make portions of the texture transparent

Billboards

Replace complex geometry with polygons texture mapped with transparent textures

3D or Solid Textures

- Solid textures are three dimensional assigning values to points in 3 space
 - Very effective at representing some types of materials such as marble and wood
- Generally, solid textures are defined procedural functions rather than tabularized functions as used in 2D

Class Objectives were:

- Texture mapping overview
- Texture filtering
- Various applications of texture mapping

Next Time

Visibility and ray tracing

Homework

Go over the next lecture slides before the class

 No more video abstract submissions on June

Any Questions?

- Come up with one question on what we have discussed in the class and submit at the end of the class
 - 1 for already answered questions
 - 2 for all the other questions
- Submit at least four times during the whole semester

