CS380: Computer Graphics
Ray Tracing
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Class Objectives

e Understand overall algorithm of recursive
ray tracing

e Ray generations
e Intersection tests and acceleration methods
e Basic sampling methods
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Various Visibility Algorithm

e Scan-line algorithm; briefly touched before
e Z-buffer
e Ray casting, etc.
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Ray Casting

e For each pixel, find closest object along
the ray and shade pixel accordingly
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e Advantages
e Conceptually simple %

S
e Can be extended to handle global %

iHlumination effects

A

e Disadvantages

e Renderer must have access to entire retained model
e Hard to map to special-purpose hardware

e Less efficient than rasterization in terms of utilizing spatial
coherence
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Recursive Ray Casting

e Ray casting generally dismissed early on
because of aforementioned problems

e Gained popularity in when
Turner Whitted (1980) showed this image

e Show recursive
ray casting could be used
for global illumination
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Ray Casting and Ray Tracing

e Trace rays from eye Into scene
e Backward ray tracing

e Ray casting used to compute visibility at
the eye

e Perform ray tracing for arbitrary rays
needed for shading
e Reflections
e Refraction and transparency
e Shadows
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Basic Algorithms of Ray Tracing

e Rays are cast from the eye point through
each pixel in the image

KAIST



Shadows

e Cast ray from the intersection point to each
light source

e Shadow rays
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From kavita’s slides
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Reflections

e If object specular, cast secondary reflected
rays
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From kavita’s slides
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Refractions

e If object tranparent, cast secondary
refracted rays
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From kavita’s slides
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An Improved lllumination Model
[Whitted 80]

e Phong model

numLights A A .. A A
b= > (KU +k(NeL)) +klL(V oR)™)
j=1
e Whitted model
num_Visible_Lights N
L= > (K +kifi(NeL))+k S+k,T

i
j=1

e S and T are intensity of light from reflection
and transmission rays

e Ks and Kt are specular and transmission
coefficient
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An Improved lllumination Model
[Whitted 80]

=D, (kA kUG(NeL )+ Sk T g

]
j=1
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SURFACE

Computing reflection and
transmitted/refracted rays is
based on Snell’'s law (refer to
Chapter 13.1)
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Overall Algorithm of Ray Tracing

e Per each pixel, compute a ray, R

Def function RayTracing (R)
e Compute an intersection against objects

e If no hit,
e Return the background color

e Otherwise,

Compute shading, c

General secondary ray, R’
Perform ¢’ = RayTracing (R’)
Return c+c’
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Ray Representation

e We need to compute the first surface hit
along a ray

e Represent ray with origin and direction
e Compute intersections of objects with ray
e Return the closest object

_ 0 d D
D(t)=0+1td e >

KAIST



16

Generating Primary Rays
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Generating Secondary Rays

e The origin iIs the intersection point p,

e Direction depends on the type of ray
e Shadow rays — use direction to the light source

e Reflection rays — use incoming direction and
normal to compute reflection direction

e Transparency/refraction — use snell’s law
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Intersection Tests

Go through all of the objects in the scene to
determine the one closest to the origin of

Strategy: Solve of the intersection of the Ray
with a mathematical description of the
object
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Simple Strategy

e Parametric ray equation

e Gives all points along the ray as a function of
the parameter

p(t)=0+td
e Implicit surface equation

e Describes all points on the surface as the zero
set of a function

f(p)=0

e Substitute ray equation into surface
function and solve for t

f(o+td)=0
i KAIST
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Ray-Plane Intersection

e Implicit equation of a plane:
Nn-p—d=0
e Substitute ray equation:
n-(0+td)—d=0
e Solve for t:
t(n-d)=d-n-o
-~ d-n-0
n-d

{
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Generalizing to Triangles

e Find of the point of intersection on the plane
containing the triangle

e Determine if the point is inside the triangle
e Barycentric coordinate method

e Many other methods
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Barycentric Coordinates

e Points in a triangle have positive
barycentric coordinates:

p:avo+lb\71+7\72 where a+pf+y=1
Vo
p:Vo+IB(V1_Vo)+7(V2_Vo)
e P p= (1= S~y No+ B+,

>

Vi
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Barycentric Coordinates

e Points in a triangle have positive
barycentric coordinates:

Pp=av,+ N, + N, where a+f+y=1

e Benefits:

e Barycentric coordinates can be used for interpolating
vertex parameters (e.g., normals, colors, texture
coordinates, etc)
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Ray-Triangle Intersection

e A point in a ray intersects with a triangle

p(t) =Vo + BV, —Vy) + 7 (V, — V)

e Three unknowns, but three equations

e Compute the point based on t

e Then, check whether the point is on the
triangle

e Refer to Sec. 4.4.2 in the textbook for the detail
equations
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Robustness Issues

e False self-intersections

e One solution iIs to offset the origin of the ray
from the surface when tracing secondary rays

Secondary ray
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Pros and Cons of Ray Tracing

Advantages of Ray Tracing: < Toy RayTracer |- |[0JBd
e Very simple design

e Improved realism over
the graphics pipeline

Disadvantages:
e Very slow per pixel calculations

e Only approximates full global illumination

e Hard to accelerate with special-purpose H/W
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Acceleration Methods

e Rendering time for a ray tracer depends on the
number of ray intersection tests per pixel

e The number of pixels X the number of primitives in the scene

e Early efforts focused on accelerating the ray-
object intersection tests

e More advanced methods required to make ray
tracing practical r W

e Bounding volume hierarchies < oy RayTracer [ (OB

e Spatial subdivision T —




Bounding Volumes

e Enclose complex objects within a simple-to-
Intersect objects
e |If the ray does not intersect the simple object then its contents
can be ignored

e The likelihood that it will strike the object depends on how
tightly the volume surrounds the object.

Spherical Bounding Volumes

. W

Axis-Aligned
Bounding Boxes

Potentially tighter fit,
28 but with higher computation KAIST



Hierarchical Bounding Volumes

e Organize bounding volumes as a tree

e Each ray starts with the root BV of the tree
and traverses down through the tree
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Spatial Subdivision

|dea: Divide space in to subregions
e Place objects within a subregion into a list

e Only traverse the lists of subregions that the ray
passes through

e “Mailboxing” used to avoid multlple test with
objects in multiple regions @ | | PR

e Many types
e Regular grid

e Octree
e BSP tree
e kd-tree
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Kd-tree: Example
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Kd-tree: Example
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Kd-tree: Example
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Kd-tree: Example

What about triangles overlapping the split?
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Kd-tree: Example
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Split Planes

e How to select axis & split plane?
e Largest dimension, subdivide in middle
e More advanced.:
eSurface area heuristic

e Makes large difference
e 50%06-100%0 higher overall speed

KAIST



38

Median vs. SAH

T ﬁ

(from [Wald04])
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Ray Tracing with kd-tree

e Goal: find closest hit with scene

e Traverse tree front to back
(starting from root)

e At each node:
e If leaf: intersect with triangles
e If Inner: traverse deeper
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Other Optimizations

e Shadow cache
e Adaptive depth control
e Lazy geometry loading/creation
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Distributed Ray Tracing [Cook et
al. 84]

e Cook et al. realized that ray-tracing, when
combined with randomized sampling, which they
called “jittering”, could be adapted to address a
wide range of rendering problems:
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Soft Shadows

e Take many samples from area light source
and take their average

e Computes fractional visibility leading to
penumbra

W
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Antialiasing

e The need to sample is problematic because
sampling leads to aliasing
e Solution 1: super-sampling
e Increases sampling rate, but does not completely eliminate
aliasing
e Difficult to completely eliminate aliasing without prefiltering
because the world is not band-limited

KAIST
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Antialiasing

e Solution 2: distribute the samples randomly

e Converts the aliasing energy to noise which is less
objectionable to the eye

Instead of casting one
ray per pixel, cast several

\\ sub- sampling.
>
<\ Instead of uniform sub-
~ \ sampling, jitter the pixels
\\\ ... slightly off the grid.
T~ J yd
~ L J

KAIST
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Jittering Results for Antialiasing

2X2
sub-sampling

KAIST
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Depth-of-Field

e Rays don’t have to all originate from a single point.

e Real cameras collects rays over an aperture
e Can be modeled as a disk

e Final image is blurred away from the focal plane

e Gives rise to depth-of-field effects
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Depth of Field

_ lens
image

plane

focal:plane
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Depth of Field

e Start with normal eye ray and find
Intersection with focal plane

e Choose jittered point on lens and trace line
from lens point to focal point

focal:plane
lens !

48 KAIST



49

Motion Blur

e Jitter samples through time

e Simulate the finite interval that a shutter iIs
open on a real camera
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Motion Blur

[ [ ]Y
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Complex Interreflection

e Model true reflection behavior as described by a full
BRDF

e Randomly sample rays over the hemisphere, weight
them by their BRDF value, and average them
together

e This technique is called “Monte Carlo Integration”
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Related Courses

e CS580: Advanced Computer Graphics

e Focus on rendering techniques that generate
photo-realistic images

e C5482: Interactive Computer Graphics

e Interactive global illumination implemented by
rasterization approaches

e Techniques used in recent games
e I'll teach it at Fall of 2015
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