CS380: Computer Graphics Introduction

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/CG

About the Instructor

- Main Research Focus
 - Handle massive data for various computer graphics and geometric problems
 - Paper and video: http://sglab.kaist.ac.kr/papers.htm
 - YouTube videos: <u>http://www.youtube.com/user/sglabkaist</u>

About the Instructor

- Notable recognitions
 - Co-chairs at ACM Symp. on Interactive 3D Graphics and Games
 - Best paper award at Pacific Graphics
 - Test-of-time award at High Performance
 Graphics
 High-Performance Graphics
 - Interns/post.doc/collaborations at Disney, Adobe, AMD, Pixar
 - Produced two professors on rendering (GIST) and related topics

Present: Scalable Ray Tracing, Image Search, Motion Planning

 Designing scalable graphics and geometric algorithms to efficiently handle massive models on commodity hardware

Photo-realistic rendering

Image search

Motion planning

Course Information of CS380

Instructor: Sung-eui Yoon

Email: sungeui@gmail.com

Office: 3432 at CS building

Office hours: Right after class time (or by

appt.)

Course webpage:

http://sglab.kaist.ac.kr/~sungeui/CG/

Noah discussion page:

Use this one for sharing Q&A with other students, instead of personal communication to TAs

KLMS: homework submissions

Class Time

- Date: every TTh
 - Time: 4:00pm ~ 5:15pm
- 4 credit course
 - A few (2) OpenGL courses given by TAs

TAs

- TA email address: <u>cs380ta@gmail.com</u>
 - Use noah board, if possible
- MyungBae Sohn (손명배)
 - Office: E3-1, 3443호
- YoungKi Kown (권영기)
 - Office: E3-1, 3443호
- HeeChan Shin (신희찬)
 - Office: E3-1, 3443호
- HyunHo Ha (하현호)
 - Office: E3-1, 3422호
- InSoo Kim (김인수)
 - Office: E3-1, 3422호

Prerequisites

- Basic knowledge of linear algebra
 - E.g., matrix multiplication
- Basic knowledge of programming skill
 - Preferably with C-like language (e.g., C and C++)
- If you are unsure, consult the instructor at the end of this class

Overview

We will discuss various parts of computer graphics

Modelling

Simulation & Rendering

Image

Computer vision inverts the process Image processing deals with images

Application of Computer Graphics

- Games
- Movies and film special effects
- Product design and analysis
- Medical applications
- Scientific visualization

Games

2D game

3D shooting game

Large-Scale Open World w/ High Quality Rendering

Witcher 3

Used its own engine

High Quality Mobile Games

- Lineage 2 Revolution
 - Based on Unreal engine

Game Industry at Korea

- One of biggest IT sectors in Korea
 - A game company can have its own pro.
 Baseball team (e.g., NC Dinos)

창원에 엔씨소프트 프로야구단 생긴다(종합)

KBO 이사회 개최

(서울=연합뉴스) 이상학 기자 =11일 오전 서울 강남구 도곡동 야구회관에서 열린 KBO 이사회에서 유영구 총재가 회의를 주재하고 있다. 8개 구단 사장단이 참석한 가운데 열린 이날 이사회에서는 9구단 중인 여부 등을 논의한다.2011,1,11 leesh@yna,co,kr

Movies and Film Special Effects

Toy story

Matrix

3D Movies

Avatar

3D TV

Samsung 3D TV

Head-Mounted Display (HMD) for VR

HoloLens for Augmented Reality (AR)

Killer App. For AR

Product Design and Analysis

Computer-aided design (CAD)

Medical Applications

Visualizing data of CT, MRI, etc

Rapidia homepage

Medical Applications

Visualizing data of CT, MRI, etc

Wikipedia

Mouse skull (CT)

Scientific Applications

Weather visualization

LLNL

Topics

- Mathematical tools
- 3D models and interaction
- Hidden surface removal
- Rasterization
- Lighting and shading
- Shadows
- Texture mapping

- Ray tracing
- Global illumination
- Curves and surfaces
- Simplification and levels of detail
- Collision detection
- Graphics hardware, etc

Mathematical Tools

- Homogeneous coordinates
- Vectors
- Planes
- Frames
- Transformations

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

3D Models and Interaction

- Loading and view models
- Picking and selection
- Modeling a trackball
- Virtual reality (VR) is all about interaction

Hidden Surface Removal

- Classic problem
- BSP trees
- Ray casting
- Depth buffering

Rasterization

- Clipping
- Scan conversion

Lighting and Shading

- Flat, gouraud, and phong shading
- Empirical and physicallybased illumination models
- BRDFs

Shadows

- Shadow volumes
- Shadow maps

Images courtesy of Stamminger and Drettakis 02

31

Texture Mapping

- Surface parameterization
- Mipmaps and filtering
- Reflection and environment mapping

Ray Tracing

- Object intersection
- Reflection and refraction
- Depth-of-field, motion blur, glossy reflections, soft shadows

Global Illumination

- Rendering equation
- Path tracing, photon mapping, radiosity

Curves and Surfaces

- Bezier curves and Bsplines
- NURBS and subdivision surfaces
- Parametric solids

Simplification and LOD

- Levels of detail
- Progressive meshes

Graphics Hardware

- History
- Architecture
- Shading languages
- Future

Animation

- Keyframing
- Parameteric splines
- Motion capture
- Simulation

Textbook

- A book of Rendering
 - Draft, Sung-eui Yoon
 - 1st Edition near the end of 2017
 - Available freely as a pdf file through the course web page

Rendering

Sung-eui Yoon

KAIST

1st edition (Expected to be completed at 2017)

Copyright 2016 ~ 2017

Reference – OpenGL

- OpenGL Programming Guide
 - Addison-Wesley Professional
 - Ver 4.3 is ordered to KAIST library
- Version 1.1 is available at internet and the course webpage
- Reference book is also available

http://www.glprogramming.com/blue

Reference

- Fundamentals of Computer Graphics
 - Peter Shirley et al.
 - AK Peters
 - Available at the KAIST library

Resource on Physically-based Rendering

- Reference
 - Physically based renderig, Matt Pharr et al.
 - Advanced Global Illumination, Philip Dutre et al. 2nd edition
 - Realistic Image Synthesis Using Photon Mapping, Henrik Jensen
 - Realistic Ray Tracing, 2nd edition, Peter Shirley et al.

KAIST

Other Reference

- Technical papers
 - Graphics-related conference (SIGGRAPH, etc)
 - http://kesen.huang.googlepages.com/

- Course homepages
- Google or Google scholar

Program Assignments (PAs)

- 6 or 7 PAs
 - Viewing and manipulating 3D models with OpenGL
 - Rasterization and clipping
 - Texture mapping and lighting
 - Raytracing
 - Their difficulty is growing!

Grading

Mid-term: 20%Final-term: 30%Quiz and assignments: 50%

- Late policy
 - No score for late submissions
 - Submit your work before the deadline!

Class Attendance Rule

- Late two times → count as one absence
- Every two absences → lower your grade (e.g., A- → B+)
- To check attendance, I'll call your names or take pictures
- If you are in situations where you should be late, notify earlier

Honor Code and Etiquette

- Collaboration encouraged, but assignments must be your own work
- Cite any other's work if you use their codes
 - If you copy someone else's codes, you will get F
 - We will use a code copy checking tool to find any copy
- Classroom etiquette
 - Help you and your peer to focus on the class
 - Turn off cell phones
 - Arrive to the class on time
 - Avoid private conversations
 - Be attentive in class

Official Language in Class

- English
 - I'll give lectures in English
 - I may explain again in Korean if materials are unclear to you
 - You are also recommended to use English, but not required

Other Related Courses

- CS580 (Graduate-level introductory CG, Spring semester)
 - Focus on high quality rendering, which will be briefly touched at the end of CS380
 - Undergraduate students can take the course
- CS380 (Spring semester)
- CS482 (Fall semester)
 - Focus on advanced, real-time rendering techniques
- All the courses will be given among me, Prof. Park, and Prof. Kim.

Homework for Each Class

- Go over the next lecture slides before the class
 - Just 10 min ~ 20 min for this should be okay
- Two video abstract submission every week
- Question submissions at least four times before the mid-term exam

Next Time...

- Screen & world space
- Basic OpenGL usage

About You

- Name
- What is your major?
- Previous graphics experience
- Any questions?

