
CS380: Computer Graphics
Modeling Transformations

Sung-Eui Yoon
(윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/CG/

2

Class Objectives (Ch. 3.5)
● Know the classic data processing steps,

rendering pipeline, for rendering primitives
●Understand 3D translations and rotations

3

Outline
●Where are we going?

● Sneak peek at the rendering pipeline
● Vector algebra
●Modeling transformation
● Viewing transformation
● Projections

4

The Classic Rendering Pipeline
●Object primitives defined by

vertices fed in at the top
● Pixels come out in the display at

the bottom
● Commonly have multiple

primitives in various stages of
rendering

5

Modeling Transforms
● Start with 3D models defined in

modeling spaces with their own
modeling frames:

● Modeling transformations orient models
within a common coordinate frame
called world space,
● All objects, light sources, and the camera

live in world space

● Trivial rejection
attempts to
eliminate
objects that
cannot possibly
be seen
● An optimization

t
n

t
2

t
1 m,...,m,m 

tw

6

Illumination
● Illuminate potentially visible objects
● Final rendered color is determined by

object’s orientation, its material
properties, and the light sources in the
scene

7

Viewing Transformations
●Maps points from world space to

eye space:

● Viewing position is transformed to
the origin

● Viewing direction is oriented along
some axis

Vtt we  =

8

Clipping and Projection
● We specify a volume called a viewing

frustum
● Map the view frustum to the unit cube
● Clip objects against the view volume,

thereby eliminating geometry not visible in
the image

● Project objects
into two-dimensions

● Transform from
eye space to
normalized device
coordinates

9

Rasterization and Display
● Transform normalized device

coordinates to screen space
● Rasterization converts objects pixels

- Almost every step in the rendering
pipeline involves a change of coordinate
systems!
- Transformations are central to
understanding 3D computer graphics

10

But, this is a architectural
overview of a recent GPU (Fermi)

● Unified
architecture

● Highly parallel
● Support CUDA

(general
language)

● Wide memory
bandwidth

11

But, this is a architectural
overview of a recent GPU

12

Recent CPU Chips (Intel’s Core
i7 processors)

13

Vector Algebra
●We already saw vector addition and

multiplications by a scalar
●Will study three kinds of vector

multiplications
● Dot product (⋅) - returns a scalar
● Cross product (×) - returns a vector
● Tensor product (⊗) - returns a matrix

14

Dot Product ()

●Returns a scalar s
●Geometric interpretations s:

●
● Length of projected onto

and or vice versa
● Distance of from the origin

in the direction of

[] [] s

1
b
b
b

0aaababas,

0
b
b
b

0aaababa
z

y

x

zyx
T

z

y

x

zyx
T =



















=≡⋅=



















=≡⋅ 

cosθbaba =⋅

a
θ

b

a

b

cosθb

b

b
a

15

Cross Product (×)

● Return a vector that is perpendicular to both
and , oriented according to the right-hand rule

● The matrix is called the skew-symmetric matrix of

0cb
0ca

c

0
b
b
b

0000
00aa
0a0a
0aa0

ba
z

y

x

xy

xz

yz

=⋅
=⋅

=





































−
−

−

≡× 




[]xyyxzxxzyzzy babababababac −−−=
c a

b
a

16

Cross Product (×)
● A mnemonic device for remembering the

cross-product

17

Modeling Transformations
● Vast majority of transformations are

modeling transforms
●Generally fall into one of two classes

● Transforms that move parts within the model

● Transforms that relate a local model’s frame to
the scene’s world frame

●Usually, Euclidean transforms, 3D rigid-
body transforms, are needed

cMcc tt
1

t
1 wmm  =

cMcc ′= t
1

t
1

t
1 mmm 

18

Translations
● Translate points by adding offsets to their

coordinates

● The effect of this translation:



















=
=

′=

1000
t100
t010
t001

Twhere
cwTcmcm
cmTcmcm

z

y

x

ttt

ttt





19

3D Rotations
●More complicated than 2D rotations

● Rotate objects along a rotation axis

● Several approaches
● Compose three canonical rotations about the

axes
● Quaternions

20

Geometry of a Rotation

●Natural basis for rotation of a vector about
a specified axis:

21

Geometry of a Rotation

22

Tensor Product ()

● Creates a matrix that when applied to a
vector return scaled by the project of
onto

ac c
b

23

Tensor Product ()
●Useful when
● The matrix is called

the symmetric matrix of
● We shall denote this

ab =
aa⊗

⊗A
a

)(

)(

caa

caa

⋅=

⊗=

24

Sanity Check
● Consider a rotation by about the x-axis

● You can check it in any computer graphics
book, but you don’t need to memorize it

θθθθ sin

0000
0010
0100
0000

)cos1(

0000
0000
0000
0001

cos

0000
0100
0010
0001

1000
0000
0000
0000

),

0
0
0
1

(


















−

+−



















+



















+



















=



















Rotate


















−

=

1000
0cossin0
0sincos0
0001

θθ
θθ

25

Rotation using Affine
Transformation

â

⊥x

x

b


[]


















⊥

1
0

ˆ
t
s

obxa 


[]


















⊥

1
0

ˆ
t
s

Robxa x
θ



s

t
Assume that these basis
vectors are normalized

26

Quaternion
●Developed by W. Hamilton in 1843

● Based on complex numbers
● Two popular notations for a quaternion, q

● w + xi + yj + zk, where i2= j2= k2= ijk = -1
● [w, v], where w is a scalar and v is a vector

● Conversion from the axis, v, and angle, t
● q = [cos (t/2), sin (t/2) v]
● Can represent rotation

● Example: rotate by degree a along x axis:
qx = [cos (a/2), sin(a/2) (1, 0, 0)]

27

Basic Quaternion Operations
● Addition

● q + q´ = [w + w´, v + v´]
● Multiplication

● qq´ = [ww´ - v · v´, v x v´ + wv´ +w´v]
● Conjugate

● q* = [w, -v]
●Norm

● N(q) = w2 + x2 + y2+ z2

● Inverse
● q-1 = q* / N(q)

28

Basic Quaternion Operations
● q is a unit quaternion if N(q)= 1

● Then q-1 = q*

● Identity
● [1, (0, 0, 0)] for multiplication
● [0, (0, 0, 0)] for addition

29

Rotations using Quaternions
● Suppose that you want to rotate a

vector/point v with q
● Then, the rotated v’

● v´ = q r q-1, where r = [0, v])

● Compositing rotations
● R = R2 R1 (rotation R1 followed by rotation

R2)

30

Quaternion to Rotation Matrix
●Q = w + xi + yj + zk
●Rm =| 1-2y2-2z2 2xy-2wz 2xz+2wy|

| 2xy+2wz 1-2x2-2z2 2yz-2wx |
| 2xz-2wy 2yz+2wx 1-2x2-2y2|

●We can also convert a rotation matrix to a
quaternion

31

Advantage of Quaternions
●More efficient way to generate arbitrary

rotations
● Less storage than 4 x 4 matrix
● Easier for smooth rotation
●Numerically more stable than 4x4 matrix

(e.g., no drifting issue)
●More readable

32

Class Objectives were:
● Know the classic data processing steps,

rendering pipeline, for rendering primitives
●Understand 3D translations and rotations

33

PA2: Simple Animation &
Transformation

34

OpenGL: Display Lists
●Display lists

● A group of OpenGL commands stored for later
executions

● Can be optimized in the graphics hardware
● Thus, can show higher performance
● Ver. 4.3: Vertex Array Object is much better

● Immediate mode
● Causes commands to be executed immediately

35

An Example

void drawCow()
{
if (frame == 0)
{
cow = new WaveFrontOBJ("cow.obj");
cowID = glGenLists(1);
glNewList(cowID, GL_COMPILE);
cow->Draw();
glEndList();

}

..
glCallList(cowID);
..

}

36

API for Display Lists

Gluint glGenLists (range)
- generate a continuous set of empty display lists

void glNewList (list, mode) & glEndList ()
: specify the beginning and end of a display list

void glCallLists (list)
: execute the specified display list

37

OpenGL: Getting Information
from OpenGL
void main(int argc, char* argv[])
{
…
int rv,gv,bv;
glGetIntegerv(GL_RED_BITS,&rv);
glGetIntegerv(GL_GREEN_BITS,&gv);
glGetIntegerv(GL_BLUE_BITS,&bv);
printf("Pixel colors = %d : %d : %d\n", rv, gv, bv);
….

}

void display () {
..
glGetDoublev(GL_MODELVIEW_MATRIX, cow2wld.matrix());
..
}

38

Homework
●Watch SIGGRAPH Videos
●Go over the next lecture slides

39

Next Time
● Viewing transformations

