CS380: Computer Graphics
Viewing Transformation

Sung-Eul Yoon
(24d2l)

Course URL.:
http://sglab.kaist.ac.kr/~sungeui/CG/

KAIST

Class Objectives

e Know camera setup parameters

e Understand viewing and projection
processes

e Related to Ch. 4: Camera Setting

KAIST

Viewing Transformations

e Map points from world spaces to eye
space

e Can be composed from rotations and
translations

Ever seen a uvp'e cow? \.fiing
~ Transformation

Viewing Transformations

e Goal: specify position and orientation of our
camera

KAIST

“Framing” the Picture

e A new camera coordinate
e Camera position at the origin
e Z-axis aligned with the view direction
e Y-axis aligned with the up direction

e More natural to think of camera as an
object positioned in the world frame

KAIST

Viewing Steps

e Rotate to align the two coordinate frames
and, then, translate to move world space
origin to camera’s origin

y

An Intuitive Specification

e Specify three quantities:
e Eye point (e) - position of the camera
e Look-at point (p) - center of the image
e Up-vector (U,) - will be oriented upwards in
the image

KAIST

Deriving the Viewing
Transformation

e First compute the look-at vector and

normalize -]
|=p-e |=—

—

e Compute right vector and normalize
e Perpendicular to the look-at and up vectors

— A

r=1Ixu., r=

a

§
.]__1 U-"j
e Compute up vector s \
e U, is only approximate direction | p
e Perpendicular to right and look-at vectors

=1 ~

G="Fxl
KAIST

Rotation Component

e Map our vectors to the cartesian coordinate axes
0 0

e To compute R, we invert the matrix on the right

1
0

1

0

0 0 1

- o -R,

e This matrix M is orthonormal (or orthogonal) — its rows are
orthonormal basis vectors: vectors mutually orthogonal

and of unit length

e Then,
e So,

M'=M'

i}.t

KAIST

Translation Component

e The rotation that we just derived is specified about
the eye point in world space

e Need to translate all world-space coordinates so that the
eye point is at the origin
e Composing these transformations gives our viewing

transform, Vv . 1 . t
W =eR, T

} y . 01 0 0 -—e, ¢ _f.e

VR T — lj)i GX GZA 0j0 1 0 -e, _ G _G-e
-, =1, =1, 0|0 0 1 -¢, 1 [.e

0 o0 o0 140 00 1) |00O0 1 |

Transform a world-space point into a point in the eye-space

11

Viewing Transform in OpenGL

e OpenGL utility (glu) library provides a
viewing transformation function:

(C

C

ou
ou

C

ou

D
D

D

e eyex, double eyey, double eyez,
e centerx, double centery, double centerz,

e upx, double upy, double upz)

e Computes the same transformation that we
derived and composes it with the current matrix

Same to glm::gtc.:matrix_transform::lookAt (..)

KAIST

Examgle IN the Skeleton Codes
of PA

void setCamera ()
{...
/[initialize camera frame transforms
for (i=0; 1 < cameraCount; i++)
{
double* ¢ = cameras]i];
wld2cam.push_back(FrameXform());
glPushMatrix();
glLoadldentity();
gluLookAt(c[0],c[1],c[2], c[3],c[4],c[5], c[6],c[7],c[8]);
glGetDoublev(GL_MODELVIEW_MATRIX, wld2cam[i].matrix());
glPopMatrix();
cam2wld.push_back(wld2camli].inverse());

12 KAIST

13

Projections

e Map 3D points in eye space to 2D points in
Image space

e Two common methods
e Orthographic projection
e Perspective projection

KAIST

14

Orthographic Projection

e Projects points along lines parallel to z-axis
e Also called parallel projection
e Used for top and side views in drafting and
modeling applications

e Appears unnatural due to lack of
perspective foreshortening

N R T X

Notice that the parallel lines
of the tiled floor remain
parallel after orthographic
projection!

15

Orthographic Projection

e The projection matrix for orthographic projection

Is very simple

- N < X

e Next step is to convert points to NDC

o O O —

o O —= O

o O O O

—_ O O O

- N < X

KAIST

View Volume and Normalized
Device Coordinates

e Define a view volume

e Compose projection with a scale and a
translation that maps eye coordinates to
normalized device coordinates

7]
top \ l Liid
et Ll
, .Jt —
AR
bottom far EEEEEEEEEE
lef) OCIPPEE ——near Normalized Device Coordinates

I'lgh’) _lIST

Orthographic Projections to NDC

X'| | g O 0
V| O e O
Z' 0 0 Ty,
1] 1 0 0 0

Some sanity checks:

right +left

_ I 2eft — ST EC —
X=left =X = right—left — right—left — right—left —

—(righteft)]
rightleft
—(topbottom)
top-bottom
—(famear)
farnear

right —left

2-right right+left _ right—left]

- /
X=nght = X = jgriZiefr — right et

17

~right—left —

- N < X

Scale the z
coordinate in
exactly the same
way .Technically,
this coordinate is
not part of the

1 \b__ |
A\/ projection. But,

we will use this
value of z for
other purposes

KAIST

Orthographic Projection in
OpenGL

e This matrix is constructed by the following
OpenGL call:

void glOrtho(double left, double right,
double bottom, double top,
double near, double far);

Same to glm::gtc::matrix_transform::ortho (..)

18 KAIST

Perspective Projection

e Artists (Donatello, Brunelleschi, Durer, and Da Vinci) during
the renaissance discovered the importance of perspective for
making images appear realistic

e Perspective causes objects nearer to the viewer to appear
larger than the same object would appear farther away

e Homogenous coordlnates allow perspectlve pro;ectlons using
linear operators ‘ ~ -

19

Signs of Perspective

tersect

lways

ective space a

in proj
int

at a po

‘w«\né DLW .n.w. e
,Fﬁ%.e“@lu %h«w&%mm 31, SO

e Lines

KAIST

20

Perspective Projection for a
Pinhole Camera

Image sensor View plane p
plane

G
©

21 KAIST

Perspective Projection Matrix

e The simplest transform for perspective
projection is: o

!/

wx'| [1 0 0 O] x
wy'’ 0 1 0 Oy
wz'| |0 0 0 0]z
W 0 0 1 01|

e We divide by w to make the fourth
coordinate 1

e In this example, w = z
e Therefore, xX'=x/2z,y'=y/z,2=0

22 KAIST

Normalized Perspective

¢ As in the orthographic case, we map to
normalized device coordinates

23 KAIST

NDC Perspective Matrix

—(righteft)

WX [Amen, 0 righterty Ty
WYL 0 it et 0| Y
wz'| |00 e e s
w0 o 1 0 |1

e The values of left, right, top, and bottom are specified at the

24

near depth. Let’s try some sanity checks:

— 2. left near(right +left)
X o Ieft j X’ — r|8ﬁta—r|eeﬁ R I’Ight —Ieft — —near — _]
Z =near near neat

— I 2-near-right near(right +left)
X o rlght j X’ — I’Ight —Ieft o r|ght—|eﬁ — near — j
Z =near near neat

KAIST

NDC Perspective Matrix

- .
WX gt ot
wy’' 0
wz' 0
W 0

0 —(righteft)
rightleft
2-near —(topbottom)
top-bottom top-bottom
0 farnear
farnear
0 1

0
0

—2.famear

farnear

0

-t N < X

e The values of left, right, top, and bottom are specified at the

near depth. Let’s try some sanity checks:

z=far=27 =

Z=near—=7 =

25

far +near . far (far—
far far —near + far —-near arfg?_rnngb
_ far
far
far +near —2-far -near
near far —near + far —near ne?af:‘fnaepﬁr)

near

near

=1

KAIST

26

Perspective in OpenGL

e OpenGL provides the following function to define
perspective transformations:

void glFrustum(double /eft double right,
double bottom, double top,
double near, double far);

e Some think that using glFrustum() is nonintuitive.
So OpenGL provides a function with simpler, but
less general capabilities

void gluPerspective(double vertfov, double aspect,
double near, double far);

KAIST

gluPerspective()

-aspect * near * tan(vert fov/2)

~ aspect * near * tan(vert fov/2) Simple “camera_
] 1 b
E““ :E::M near * tan(vert fov/2) I | ke m Odel
gy ;33 Can only specify
Sngaiy symmetric
SN frustums
~L T
HL“"*-.
~_near *tan(vert fov/2)

e Substituting the extents into glFrustum()

21 KAIST

Examgle IN the Skeleton Codes
of PA

void reshape(int w, int h)

{

29

width =w; height = h;
glViewport(0, 0, width, height);

gIMatrixMode(GL_PROJECTION); /[Select The Projection Matrix
glLoadldentity(); /[Reset The Projection Matrix

/[Define perspective projection frustum

double aspect = width/double(height);

gluPerspective(45, aspect, 1, 1024);
gIMatrixMode(GL_MODELVIEW); I/l Select The Modelview Matrix

glLoadldentity(); /[Reset The Projection Matrix

KAIST

30

Class Objectives were:

e Know camera setup parameters

e Understand viewing and projection
processes

KAIST

31

Homework

e Watch SIGGRAPH Videos
e Go over the next lecture slides

KAIST

32

PA3

e PA2: perform the transformation at the modeling
space

e PA3: perform the transformation at the viewing
space
KAIST

33

Next Time

e Interaction

KAIST

34

figs

KAIST

35

KAIST

