
CS380: Computer Graphics
Texture Mapping

Sung-Eui Yoon
(윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/CG

2

Class Objectives (CH. 11)
● Texture mapping overview
● Texture filtering
● Various applications of texture mapping

3

Texture Mapping
● Requires lots of geometry to fully represent

complex shapes of models
● Add details with image representations

Excerpted from MIT EECS 6.837,
Durand and Cutler

4

The Quest for Visual Realism

5

Photo-Textures

Excerpted from MIT EECS 6.837,
Durand and Cutler

6

Texture Maps in OpenGL

● Specify normalized texture
coordinates at each of the
vertices (u, v)

● Texel indices
(s,t) = (u, v)  (width,
height)

glBindTexture(GL_TEXTURE_2D, texID)
glBegin(GL_POLYGON)

glTexCoord2d(0,1); glVertex2d(-1,-1);
glTexCoord2d(1,1); glVertex2d(1,-1);
glTexCoord2d(1,0); glVertex2d(1, 1);
glTexCoord2d(0,0); glVertex2d(-1, 1);

glEnd()

(x4,y4)
(u4,v4)

(x1,y1)
(u1,v1)

(x2,y2)
(u2,v2)

(x3,y3)
(u3,v3)

7

Wrapping
● The behavior of texture coordinates outside of the

range [0,1) is determined by the texture wrap
options.
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, wrap_mode)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, wrap_mode)

GL_CLAMP GL_REPEAT

8

Linear Interpolation of Texture
Coordinates
● Simple linear interpolation of u and v over a

triangle in a screen space leads to
unexpected results
● Distorted when the triangle’s vertices do not

have the same depth
● Perspective-correct interpolation (interpolation

in the object space) is implemented

9

Sampling Texture Maps
● The uniform sampling pattern in screen

space cooresponds to some sampling
pattern in texture space that is not
necessarily uniform

Screen space
Texture space

x

y

s

t

10

Sampling Density Mismatch
● Sampling density in texture space rarely

matches the sample density of the texture
itself

Oversampling
(Magnification)

Undersampling
(Minification)

11

Handling Oversampling

● How do we compute
the color to assign to
this sample?

texture

sample

12

Handling Oversampling

● How do we compute
the color to assign to
this sample?

● Nearest neighbor –
take the color of the
closest texel

texture

13

Handling Oversampling

● How do we compute
the color to assign to
this sample?

● Nearest neighbor –
take the color of the
closest texel

● Bilinear interpolation

texture

0 0(x ,y)

1 1(x ,y)

(x,y)




0

1 0

x x

x x
 




0 1

2 3

c ((1)c c)(1)

((1)c c)

  
  

    
 

0c 1c

2c 3c

0

1 0

y y

y y
 




14

Undersampling

● Details in the texture tend to pop
(disappear and reappear)
● Mortar (white substances) in the brick

● High-frequency details lead to strange
patterns
● Aliasing

15

● To avoid aliasing we need to prefilter the
texture to remove high frequencies
● Prefiltering is essentially a spatial integration

over the texture
● Integrating on the fly is expensive: perform

integration in a pre-process

Spatial Filtering

Samples and
their extents Proper filtering removes aliasing

16

MIP Mapping
● MIP is an acronym for the Latin

phrase multium in parvo, which
means "many in one place"
● Constructs an image pyramid
● Each level is a prefiltered

version of the level below
resampled at half the frequency

● While rasterizing use the level with the sampling
rate closest to the desired sampling rate

● Can also interpolate between pyramid levels

● How much storage overhead is required?

 
i

1
i 0 4

1 1 4
mip map size =

4 1 3





 


17

Storing MIP Maps
● One convenient method of storing a MIP map is

shown below
● It also nicely illustrates the 1/3 overhead of maintaining

the MIP map

18

Finding the MIP Level
● Use the projection of a pixel in screen into

texture space to figure out which level to
use

19

Summed-Area Tables
● Another way performing the prefiltering

integration on the fly
● Each entry in the summed area table is the sum of

all entries above and to the left:

0x 1x

0y

1y

What is the sum of the
highlighted region?

1 1 1 0 0 1 0 0T(x ,y) T(x ,y) T(x ,y) T(x ,y)  

Divide out area (y1 – y0)(x1 – x0)

20

Summed-Area Tables
● How much storage

does a summed-area
table require?

● Does it require more
or less work per pixel
than a MIP map?

● Can be implemented
in a fragment shader

No
Filtering

MIP
mapping

Summed-
Area
Table

21

Texture Filtering in OpenGL
● Automatic creation

gluBuild2DMipmaps(GL_TEXTURE_2D, GL_RGBA, width, height,
GL_RGBA, GL_UNSIGNED_BYTE, data)

● Filtering
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, filter)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, filter)

where filter is:
GL_NEAREST
GL_LINEAR

GL_LINEAR_MIPMAP_LINEAR
GL_NEAREST_MIPMAP_NEAREST
GL_NEAREST_MIPMAP_LINEAR
GL_LINEAR_MIPMAP_NEAREST

inter-level intra-level

22

Uses of Texture Maps
● Texture maps are used

to add complexity to a
scene
● Easier to paint or

capture an image than
geometry

● Model light
● Model geometry, etc

One of key techniques to
overcome various problems
of rasterization techniques!

23

Modeling Lighting
● Light maps

● Supply the lighting directly
● Good for static environments

● Projective textures
● Can be used to simulate a spot light
● Shadow maps

● Environment maps
● A representation of the scene around an

object
● Good for reflection

24

Light Maps in Quake
● Light maps are used to store pre-computed

illumination

Texture
Maps

Light
Maps

Data RGB Intensity

Resolution High Low

Light map
image by Nick

Chirkov

Textures Only Textures & Light Maps

25

Projective Textures
● Treat the texture as a slide in a projector

● A good model for shading variations due to illumination
(cool spotlights)

● Projectors work like cameras in reverse
● Camera: color of point in scene  color of corresponding

pixel
● Projector: color of pixel  color of corresponding point in

the scene

26

Light

Shadow Maps

Eye

Point in shadow
visible to the eye,
but not visible to

the light

Use the depth map in the
light view to determine if
sample point is visible

27

Environment Maps
● Simulate complex mirror-like

objects
● Use textures to capture

environment of objects
● Use surface normal to compute

texture coordinates

28

Environment Maps - Example

T1000 in Terminator 2 from Industrial Light and Magic

29

Cube Maps
● Maps a viewing direction b and returns an

RGB color
● Use stored texture maps

30

Cube Maps
● Maps a viewing direction b and returns an

RGB color
● Assume b = (x, y, z),

- Identify a face
based on magnitude
of x,y,z

-For the right face,
compute texture
coord. (u,v)

u = (y+x)/(2x)
v = (z+x)/(2x)

31

● Expensive to update dynamically
● Not completely accurate

● One of main reason that Cars (Pixar movie of 2006) used
ray tracing

Environment Maps - Problems

Reflection of swimming pool is wrong

im
ages from

 N
VID

IA

32

● Expensive to update dynamically
● Not completely accurate

● One of main reason that Cars (Pixar movie of 2006) used
ray tracing

Environment Maps - Problems

33

Modeling Geometry
● Store complex surface details in a texture

rather than modeling them explicitly
● Bump maps

● Modify the existing normal

● Normal maps
● Replace the existing normal

● Displacement maps
● Modify the geometry

● Opacity maps and billboards
● Knock-out portions of a polygon using the alpha channel

34

Bump Mapping
● Modifies the normal not the actual

geometry
● Texture treated as a heightfield
● Partial derivatives used to change the normal
● Causes surface to appear deformed by the

heightfield

35

More Bump Map Examples

Note that silhouette edge of
the object not affected!

+ =

36

Normal Mapping
● Replaces the normal rather than tweaking

it

37

Displacement Mapping
● Texture maps can be used to actually move

surface points

38

Opacity Maps

Use the alpha channel to make
portions of the texture transparentalpha channel

RGB channels

39

Billboards

Replace complex geometry with polygons
texture mapped with transparent textures

40

3D or Solid Textures
● Solid textures are three

dimensional assigning
values to points in 3 space

● Very effective at
representing some types of
materials such as marble
and wood

● Generally, solid textures
are defined procedural
functions rather than
tabularized functions as
used in 2D

41

Class Objectives were:
● Texture mapping overview
● Texture filtering
● Various applications of texture mapping

42

Next Time
● Visibility and ray tracing

43

Homework
● Go over the next lecture slides before the

class

● No more video abstract submissions on
June

