CS380: Computer Graphics 3D Transformation

Sung-Eui Yoon (윤성의)

Course URL: http://sgvr.kaist.ac.kr/~sungeui/CG

Class Objectives

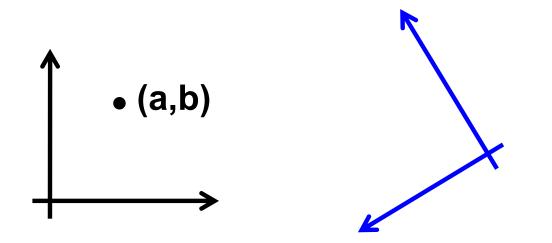
- Understand the diff. between points and vectors
- Understand the frame
- Represent transformations in local and global frames
- Related chapters of my draft
 - Ch. 3.3 Affine frame
 - Ch. 3.4 Local and global frames
- At the last class:

2

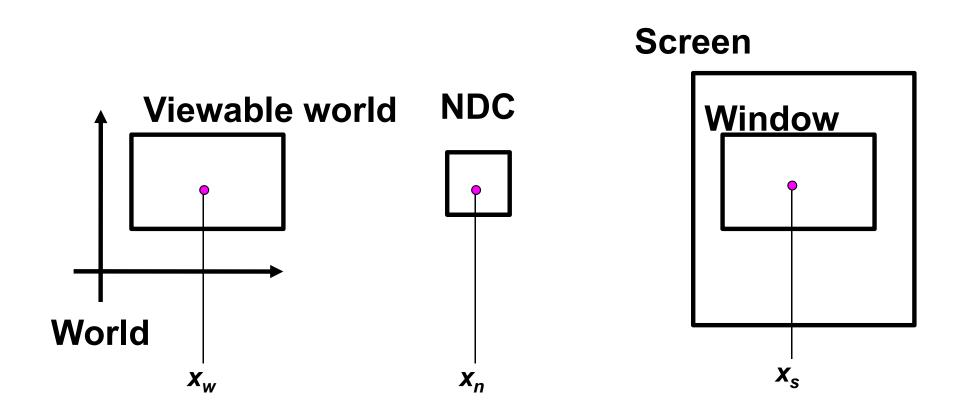
- 2D transformation and homogeneous coordinate
- Idle-based animation

A Question?

- Suppose you have 2 frames and you know the coordinates of a point relative in one frame
 - How would you compute the coordinate of your point relative to the other frame?
 - (Generalized question to the mapping problem that we went over in the class)

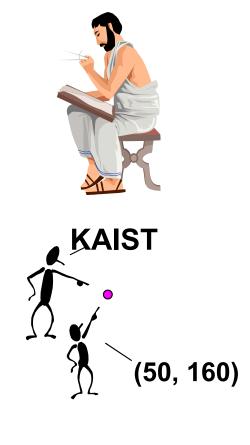


Revisit: Mapping from World to Screen



Geometry

- A part of mathematics concerned with questions of size, shape, and relative positions of figures
- Coordinates are used to represent points and vectors
 - We will learn that they are just a naming scheme
 - The same point can be described by different coordinates
 - Both vectors and points expressed by coordinates, but they are very different



Vector Spaces

• A vector (or linear) space V over a scalar field S consists of a set on which the following two operators are defined and the following conditions hold:

• Two operators for vectors:

Vector-vector addition

 $\forall \vec{u}, \vec{v} \in V \quad \vec{u} + \vec{v} \in V$

Scalar-vector multiplication

 $\forall \vec{u} \in V, \forall a \in S \quad a \vec{u} \in V$

• Notation:

$$\vec{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
$$= \begin{bmatrix} a & b & c \end{bmatrix}^t$$

Vector Spaces

Vector-vector addition

Commutes and associates

 $\vec{U} + \vec{V} = \vec{V} + \vec{U}$ $\vec{U} + (\vec{V} + \vec{W}) = (\vec{U} + \vec{V}) + \vec{W}$

 An additive identity and an additive inverse for each vector

 $\vec{u} + \vec{0} = \vec{u}$ $\vec{u} + (-\vec{u}) = \vec{0}$

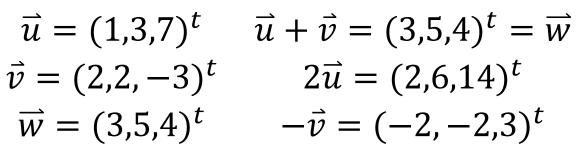
• Scalar-vector multiplication distributes $(a + b)\vec{u} = a\vec{u} + b\vec{u}$ $a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$

Example Vector Spaces

 \overrightarrow{w}

Geometric vectors (directed segments)

 \vec{v}



 \vec{u}

 $\vec{u} + \vec{v} = \vec{w}$

We can use N-tuples to represent vectors

 $2\vec{u}$

Basis Vectors

- A vector basis is a subset of vectors from V that can be used to generate any other element in V, using just additions and scalar multiplications
- A basis set, $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$, is linearly dependent if:

$$\exists a_1, a_2, \dots, a_n \neq 0$$
 such that $\sum_{i=0}^n a_i \vec{v}_i = 0$

- Otherwise, the basis set is linearly independent
 - A linearly independent basis set with *i* elements is said to *span* an *i-dimensional* vector space

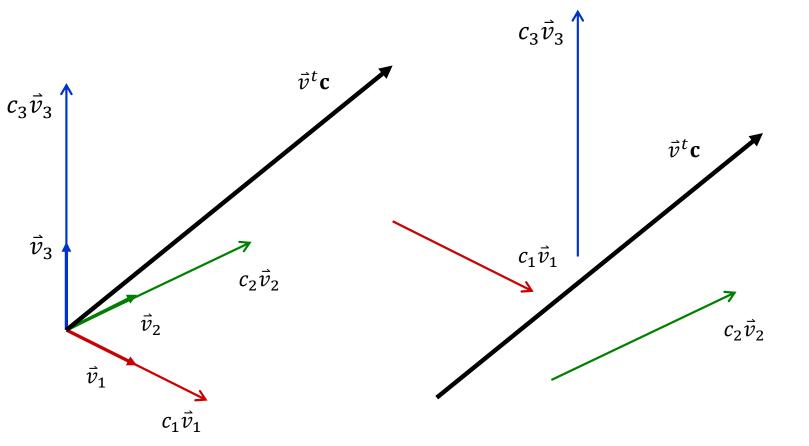
Vector Coordinates

- A linearly independent basis set can be used to uniquely name or address a vector
 - This is the done by assigning the vector coordinates as follows:

$$\vec{x} = \sum_{i=1}^{3} c_i \vec{v}_i = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$
$$= \vec{v}^t \mathbf{c}$$

- Note: we'll use bold letters to indicate tuples of scalars that are interpreted as coordinates
- Our vectors are still abstract entities
 - So how do we interpret the equation above?

Interpreting Vector Coordinates



Valid Interpretation

Equally Valid Interpretation

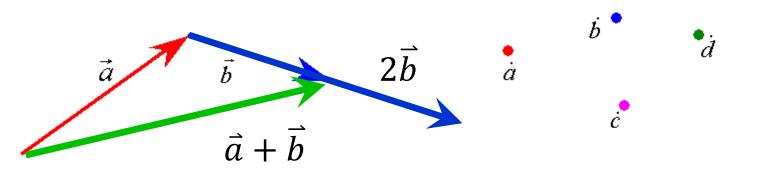
Remember, vectors don't have any notion of position

Points

- Conceptually, points and vectors are very different
 - A point \dot{p} is a place in space
 - A vector \vec{v} describes a direction independent of position (pay attentions notations)

How Vectors and Points Differ

- The operations of addition and multiplication by a scalar are well defined for vectors
 - Addition of 2 vectors expresses the concatenation of 2 "motions"
 - Multiplying a vector by some factor scales the motion
- These operations does not make sense for points



Making Sense of Points

- Some operations do make sense for points
 - Compute a vector that describes the motion from one point to another:

 Find a new point that is some vector away from a given point:

$$\dot{q} + \vec{v} = \dot{p}$$

A Basis for Points

- Key distinction between vectors and points: points are *absolute*, vectors are *relative*
- Vector space is completely defined by a set of basis vectors
- The space that points live in requires the specification of an absolute origin

$$\boldsymbol{p} = \boldsymbol{O} + \sum_{i} \boldsymbol{\nabla}_{i} \boldsymbol{C}_{i} = \begin{bmatrix} \boldsymbol{\nabla}_{1} & \boldsymbol{\nabla}_{2} & \boldsymbol{\nabla}_{3} & \boldsymbol{O} \end{bmatrix} \begin{vmatrix} \boldsymbol{C}_{1} \\ \boldsymbol{C}_{2} \\ \boldsymbol{C}_{3} \\ \boldsymbol{1} \end{vmatrix}$$

Notice how 4 scalars (one of which is 1) are required to identify a 3D point

Frames

- Points live in Affine spaces
- Affine-basis-sets are called *frames or Special Euclidean group of three, SE (3)*

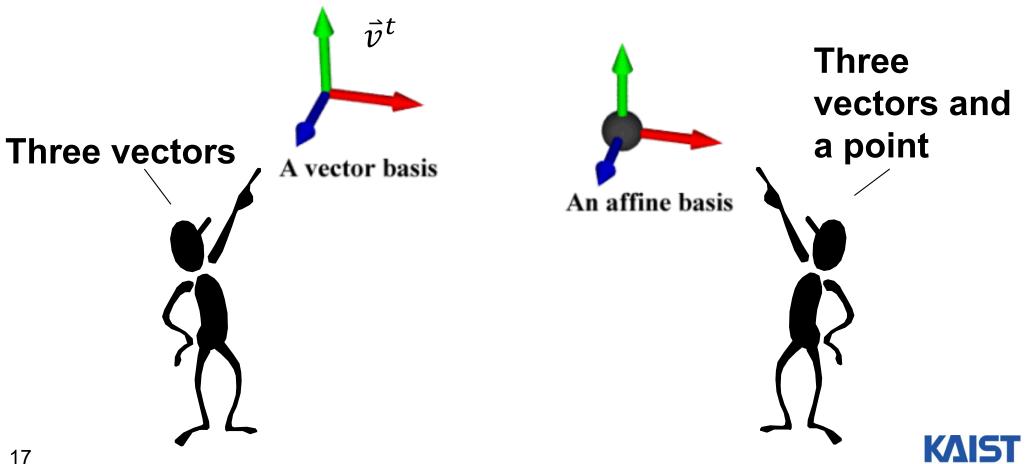
$$\mathbf{f}^{t} = \begin{bmatrix} \nabla_{1} & \nabla_{2} & \nabla_{3} & \mathbf{0} \end{bmatrix}$$

Frames can describe vectors as well as points

$$\dot{\boldsymbol{p}} = \begin{bmatrix} \vec{\boldsymbol{v}}_1 & \vec{\boldsymbol{v}}_2 & \vec{\boldsymbol{v}}_3 & \dot{\boldsymbol{o}} \end{bmatrix} \begin{bmatrix} \boldsymbol{c}_1 \\ \boldsymbol{c}_2 \\ \boldsymbol{c}_3 \\ \boldsymbol{1} \end{bmatrix} \qquad \begin{aligned} \ddot{\boldsymbol{X}} = \begin{bmatrix} \vec{\boldsymbol{v}}_1 & \vec{\boldsymbol{v}}_2 & \vec{\boldsymbol{v}}_3 & \dot{\boldsymbol{o}} \end{bmatrix} \begin{bmatrix} \boldsymbol{c}_1 \\ \boldsymbol{c}_2 \\ \boldsymbol{c}_3 \\ \boldsymbol{0} \end{bmatrix} \end{aligned}$$

Pictures of Frames

 Graphically, we will distinguish between vector bases and affine bases (frames) using the following convention



A Consistent Model

- Behavior of affine frame coordinates is completely consistent with our intuition
 - Subtracting two points yields a vector
 - Adding a vector to a point produces a point
 - If you multiply a vector by a scalar you still get a vector
 - Scaling points gives a nonsense 4th coordinate element in most cases

$$\begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \\ 1 \end{bmatrix} - \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \\ 1 \end{bmatrix} = \begin{bmatrix} a_{1} - b_{1} \\ a_{2} - b_{2} \\ a_{3} - b_{3} \\ 0 \end{bmatrix} \qquad \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \\ 1 \end{bmatrix} + \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \\ 0 \end{bmatrix} = \begin{bmatrix} a_{1} + v_{1} \\ a_{2} + v_{2} \\ a_{3} + v_{3} \\ 1 \end{bmatrix}$$

Homogeneous Coordinates

- Notice why we introduce homogeneous coordinates, based on simple logical arguments
 - Remember that coordinates are not geometric; they are just scales for basis elements
 - Thus, you should not be bothered by the fact that our coordinates suddenly have 4 numbers
- 3D homogeneous coordinates refer to an affine frame with its 3 basis vectors and origin point
 - 4 coordinates make sense in this aspect
 - 4th coordinate can have one of two values, [0,1], indicating if whether the coordinates name a vector or a point

Affine Combinations

- There are certain situations where it makes sense to scale and add points
 - Suppose you have two points, one scaled by a_1 and the other scaled by a_2
 - If we restrict the sum of these alphas, a₁ + a₂ = 1, we can assure that the result will have 1 as it's 4th coordinate value

$$\alpha_{1}\begin{bmatrix}a_{1}\\a_{2}\\a_{3}\\1\end{bmatrix} + \alpha_{2}\begin{bmatrix}b_{1}\\b_{2}\\b_{3}\\1\end{bmatrix} = \begin{bmatrix}\alpha_{1}a_{1} + \alpha_{2}b_{1}\\\alpha_{1}a_{2} + \alpha_{2}b_{2}\\\alpha_{1}a_{3} + \alpha_{2}b_{3}\\\alpha_{1} + \alpha_{2}\end{bmatrix} = \begin{bmatrix}\alpha_{1}a_{1} + \alpha_{2}b_{1}\\\alpha_{1}a_{2} + \alpha_{2}b_{2}\\\alpha_{1}a_{3} + \alpha_{2}b_{3}\\1\end{bmatrix} = \begin{bmatrix}\alpha_{1}a_{1} + \alpha_{2}b_{1}\\\alpha_{1}a_{2} + \alpha_{2}b_{2}\\\alpha_{1}a_{3} + \alpha_{2}b_{3}\\1\end{bmatrix}$$

Affine Combinations

- Can be thought of as a constrained-scaled addition
 - Defines all points that share the line connecting our two initial points

 Can be extended to 3, 4, or any number of points (e.g., barycentric coordinates)

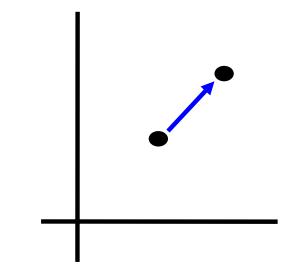
Affine Transformations

- We can apply transformations to points using matrix
 - Need to use 4 by 4 matrices since our basis set has four components
 - Also, limit ourselves to transforms that preserve the integrity of our points and vectors; point to point, vector to vector

$$\dot{\boldsymbol{p}} = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & \dot{\boldsymbol{o}} \end{bmatrix} \begin{bmatrix} \boldsymbol{c}_1 \\ \boldsymbol{c}_2 \\ \boldsymbol{c}_3 \\ 1 \end{bmatrix} \implies \dot{\boldsymbol{p}}' = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & \dot{\boldsymbol{o}} \end{bmatrix} \begin{bmatrix} \boldsymbol{a}_{11} & \boldsymbol{a}_{12} & \boldsymbol{a}_{13} & \boldsymbol{a}_{14} \\ \boldsymbol{a}_{21} & \boldsymbol{a}_{22} & \boldsymbol{a}_{23} & \boldsymbol{a}_{24} \\ \boldsymbol{a}_{31} & \boldsymbol{a}_{32} & \boldsymbol{a}_{33} & \boldsymbol{a}_{34} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{1} \end{bmatrix} \begin{bmatrix} \boldsymbol{c}_1 \\ \boldsymbol{c}_2 \\ \boldsymbol{c}_3 \\ 1 \end{bmatrix}$$

• This subset of matrices is called the *affine* subset

An Example



Composing Transformations

- Represent a series of transformations
 - E.g., want to translate with T and, then, rotate with R
- Then, the series is represented by:

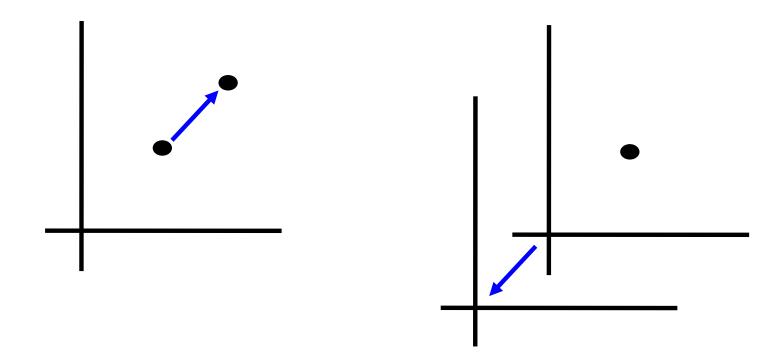
$$\dot{p} = \dot{w}^{t}c \Rightarrow \dot{p}' = \dot{w}^{t}RTc = \dot{w}^{t}(R(Tc)) = \dot{w}^{t}(Rc') = \dot{w}^{t}c''$$

- Each step in the process can be considered as a change of coordinates
- Alternatively, we could have considered the same sequence of operations as:

$$\dot{p} = \dot{w}^{t}c \Rightarrow \dot{p}' = \dot{w}^{t}RTc = ((\dot{w}^{t}R)T)c = (\dot{m}^{t}T)c = \dot{e}^{t}c,$$

, where each step is considered as a change of basis

An Example



These are alternate interpretations of the same transformations

• The left and right sequence are considered as a transformation about a *global frame and local* frames

Same Point in Different Frames

- Suppose you have 2 frames and you know the coordinates of a point relative in one frame
 - How would you compute the coordinate of your point relative to the other frame?

 $\dot{p} = \dot{w}^t \mathbf{c} = \dot{z}^t ?$

• Suppose that my two frames are related by the transform S as shown below:

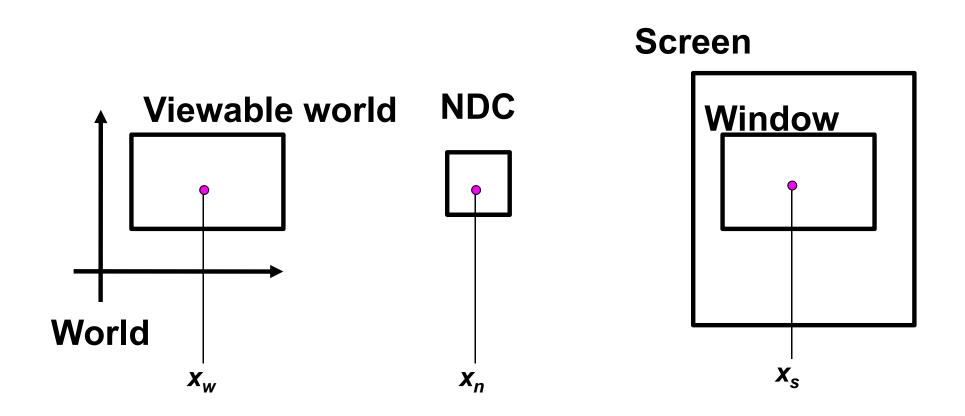
 \mathcal{D}

 $\dot{z}^t = \dot{w}^t \mathbf{S}$ and $\dot{w}^t = \dot{z}^t \mathbf{S}^{-1}$

• Then, the coordinate for the point in second frame is simply:

$$= \dot{w}^{t} \mathbf{c} = \dot{z}^{t} \mathbf{S}^{-1} \mathbf{c} = \dot{z}^{t} (\mathbf{S}^{-1} \mathbf{c}) = \dot{z}^{t} \mathbf{d}$$
Substitute
for the
frame
Reorganize
&
reinterpret

Revisit: Mapping from World to Screen



Class Objectives were:

- Understand the diff. between points and vectors
- Understand the frame
- Represent transformations in local and global frames

Quiz Assignment

Write down your answer on a paper and send its captured image

Colorpix be

Next Time

Modeling and viewing transformations

Homework

- Go over the next lecture slides before the class
- Watch 2 SIGGRAPH videos and submit your summaries before every Tue. class

Any Questions?

- Come up with one question on what we have discussed in the class and submit at the end of the class
 - 1 for already answered or typical questions
 - 2 for questions with thoughts or that surprised me

Submit two times during the whole semester

Additional slides

Scalar Fields

- A scalar field S is a set on which addition (+) and multiplication (·) are defined and following conditions hold:
 - S is closed for addition and multiplication

 $\forall a, b \in S \quad a + b \in S \quad a \cdot b \in S$

These operators commute, associate, and distribute

$$\forall a,b,c \in S$$

$$a+b=b+a \quad a \cdot b=b \cdot a$$

$$a+(b+c)=(a+b)+c \quad a \cdot (b \cdot c)=(a \cdot b) \cdot c$$

$$a \cdot (b+c)=a \cdot b+a \cdot c$$

Scalar Fields – cont'd

- A scalar field S is a set on which addition (+) and multiplication (·) are defined and following conditions hold:
 - Both operators have a unique identity element

 $a + 0 = a, \qquad a \cdot 1 = a$

 Each element has a unique inverse under both operators

$$a + (-a) = 0$$
, $a \cdot a^{-1} = 1$

Examples of Scalar Fields

Real numbers

- Complex numbers (given the standard definitions for addition and multiplication)
- Rational numbers
- Notation: we will represent scalars by lower case letters

a, b, c, ... are scalar variables

