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Class Objectives

e Understand the diff. between points and
vectors

e Understand the frame

e Represent transformations in local and
global frames

e Related chapters of my draft
e Ch. 3.3 Affine frame
e Ch. 3.4 Local and global frames

e At the last class:

e 2D transformation and homogeneous
coordinate

e Idle-based animation KAIST



A Question?

e Suppose you have 2 frames and you know the
coordinates of a point relative in one frame
e How would you compute the coordinate of your point
relative to the other frame?

e (Generalized question to the mapping problem that we
went over in the class)

° (a,b)

>
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Revisit: Mapping from World to

Screen

+ Viewable world NDC

World

]

Screen

Window
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Geometry

o A part of mathematics concerned 9
with questions of size, shape, and N/
relative positions of figures \pé
Ix
e Coordinates are used to represent KAIST
points and vectors fl
o We will learn that they are just a A\‘ /°
naming scheme gh\(so 160)
e The same point can be described by ’

different coordinates

e Both vectors and points expressed :
] Go 7 miles
by coordinates, but they are very southwest
different

KAIST



Vector Spaces

e Vector-vector addition

Vu,VEV u+vev
eScalar-vector multiplication
VUEV,Va€ES au€el

e Notation:
e Vector

-
v=|b
| C |
=la b c|

V over a scalar
field S consists of a set on which the
following two operators are defined and
the following conditions hold:

e Two operators for vectors:

KAIST



Vector Spaces

e Vector-vector addition
e Commutes and associates

U+V=V+0 U+WV+W) =(0+V)+W

e An additive identity and an additive inverse for
each vector

U+0=1 U+ (-0) =0

e Scalar-vector multiplication distributes

(a+b)u=au+bu a(u+v)=au+av

KAIST



Example Vector Spaces

e Geometric vectors (directed segments)

/\/ .

e N-tuples of scalars

u=(137)¢ u+v=G354)=w
v=(22,-3)" 2i=(2614)
W= (354 —b=(-2-23)

e We can use N-tuples to represent vectors
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Basis Vectors

e A Is a subset of vectors from V that
can be used to generate any other elementin V,
using just additions and scalar multiplications

e A basis set, v,,v,,...,7, , IS if:

n

daq, a,,...,a, # 0 suchthat zaiﬁi =0
i=0

e Otherwise, the basis set is

¢ A linearly independent basis set with /elements
Is said to span an i-dimensional vector space
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Vector Coordinates

e A linearly independent basis set can be used to
uniquely name or address a vector

e This is the done by assigning the vector as
follows:
3 Cq]
% = 2 v =[5, B, illc
i=1 €3
= pt

e Note: we'll use bold letters to indicate tuples of
scalars that are interpreted as coordinates

e Our vectors are still abstract entities
e So how do we interpret the equation above?
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Interpreting Vector Coordinates

LA
C3V3

C1V4

Valid Interpretation Equally Valid Interpretation

Remember, vectors don’t have any notion of position
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Points

e Conceptually, points and vectors are very
different

e A point D isa place in space
e A vector v describes a direction independent
of position (pay attentions notations)
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How Vectors and Points Differ

e The operations of addition and
multiplication by a scalar are well defined
for vectors

e Addition of 2 vectors expresses the
concatenation of 2 "motions”

e Multiplying a vector by some factor scales the
motion

e These operations does not make sense for
points

4
N
S
2
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Making Sense of Points

e Some operations for points

e Compute a vector that describes the motion
from one point to another:

. . = P
p—q=7vV . 5

q

e Find a new point that is some vector away from
a given point:

G+ =p
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A Basis for Points

e Key distinction between vectors and points:
points are absol/ute, vectors are relative

e Vector space is completely defined by a set of
basis vectors

e The space that points live in requires the
specification of an absolute origin

p=0+>YVc =[v, V, V; O]

Notice how 4 scalars _(on_e of which is 1)

are required to identify a 3D point
15 KAIST



Frames

e Points live in
e Affine-basis-sets are called

f = [V1 Vo, Vg O]
e Frames can describe vectors as well as points

C1 C1
C C
p=[v, v, v, 0] Ci x=[V, V, V; 0] Ci
1 0
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Pictures of Frames

e Graphically, we will distinguish between vector
bases and affine bases (frames) using the

following convention
Et
Three
vectors and
Three vectors a omt

A vector basis
/ An affine basis
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A Consistent Model

e Behavior of affine frame coordinates is
completely consistent with our intuition

e Subtracting two points yields a vector
e Adding a vector to a point produces a point

e If you multiply a vector by a scalar you still get
a vector

e Scaling points gives a nonsense 4th coordinate
element in most cases

_a1_ _b1_ _a1_b1_ _a1_ _V1_ _a1+V1_
— — + —
1 1 0 1 0 1

e L4 bl : 1 KAIST



19

Homogeneous Coordinates

e Notice why we introduce homogeneous
coordinates, based on simple logical arguments

e Remember that coordinates are not geometric; they are
just scales for basis elements

e Thus, you should not be bothered by the fact that our
coordinates suddenly have 4 nhumbers

e 3D homogeneous coordinates refer to an affine
frame with its 3 basis vectors and origin point
e 4 coordinates make sense in this aspect

e 4th coordinate can have one of two values, [0,1],

indicating if whether the coordinates name a vector or a
point
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Affine Combinations

e There are certain situations where it makes sense
to scale and add points

e Suppose you have two points, one scaled by a, and the
other scaled by a,
o If we restrict the sum of these alphas, a, + a, =1, we

can assure that the result will have 1 as it’s 4th
coordinate value

+a,

20

aa; +a,b,

o+ a,

ad; +a,b,

1

But, is it a

poi/1t?
Y

5
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Affine Combinations

e Can be thought of as a constrained-scaled addition

e Defines all points that share the line connecting our two
initial points

b

e Can be extended to 3, 4, or any humber of points
(e.g., barycentric coordinates)
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Affine Transformations

e We can apply transformations to points using
matrix
e Need to use 4 by 4 matrices since our basis set has four
components
e Also, limit ourselves to transforms that preserve the
integrity of our points and vectors; point to point, vector
to vector

C, a; a8, ag ay | ¢
A yp Gz Ay || G
31 Q3 Q3 G4 || C3
1 0 0 O 1] 1)
e This subset of matrices is called the affine subset

|o=[\71 v, V, o] = |o':[\71 v, V, o]
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An Example
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Composing Transformations

e Represent a series of transformations
e E.g., want to translate with T and, then, rotate with R

e Then, the series is represented by:

p=w'c=p' = Ww'RTc = w'(R(TQ) = W'(Re') = w'c”

e Each step in the process can be considered as a change
of coordinates

e Alternatively, we could have considered the same
sequence of operations as:

p=wtc=p = w'RTc = ((WR)T)c = (m'T)c = éc,
, Where each step is considered as a change of basis
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An Example

/

/

e These are alternate interpretations of the same
transformations

e The left and right sequence are considered as a
transformation about a global frame and localframes
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Same Point in Different Frames

e Suppose you have 2 frames and you know the
coordinates of a point relative in one frame
e How would you compute the coordinate of your point
relative to the other frame?

p=wic=2"?
e Suppose that my two frames are related by the

transform S as shown below:

L=Ww!S and w! =z!S"1

Z
e Then, the coordinate for the point in second frame is
simply:
p=wic=2'S"1c=2"(S"1c) = z'd
Substitut \ _
four t|s1; e /X? ‘{? \zeorganlze
frame

reinterpret
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Revisit: Mapping from World to

Screen

+ Viewable world NDC

World

]

Screen

Window
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Class Objectives were:

e Understand the diff. between points and
vectors

e Understand the frame

e Represent transformations in local and
global frames
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Quiz Assignment

e Write down your answer on a paper and
send its captured image

29 KAIST
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Next Time

e Modeling and viewing transformations
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Homework

e Go over the next lecture slides before the
class

e Watch 2 SIGGRAPH videos and submit your
summaries before every Tue. class
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Any Questions?

e Come up with one question on what we
have discussed in the class and submit at
the end of the class

e 1 for already answered or typical questions

e 2 for questions with thoughts or that surprised
me

e Submit two times during the whole
semester
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Additional slides
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Scalar Fields

e A scalar field on which addition
§+ and multiplication (-) are defined and
ollowing conditions hold:

e S is closed for addition and multiplication

VaabeS a+beS a-beS
e These operators commute, associate, and

distribute

va,b,ceS
a+b=b+a a-b=Db-a
a+(b+c)=(a+b)+c a-(b-c)=(a-b)-c
a-(b+c)=a-b+a-c
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Scalar Fields — cont’d

e A scalar field on which addition
§+ and multiplication (-) are defined and
ollowing conditions hold:

e Both operators have a unique identity element
a+0=a a-1=a

e Each element has a unique inverse under both
operators

a+(—a)=0, a-a”l=1
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Examples of Scalar Fields

e Real numbers

e Complex numbers
(given the standard definitions for
addition and multiplication)

e Rational numbers

e Notation: we will represent scalars by
lower case letters

a, b, ¢ ... are scalar variables

/'I-
/,l/
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