CS380: Computer Graphics Distributed Ray Tracing

Sung-Eui Yoon (윤성의)

Course URL: http://sgvr.kaist.ac.kr/~sungeui/CG/

Class Objectives

- Support various effects based on distributed ray tracing
 - Acceleration methods
 - Random sampling, jittering, in each pixel
- At the last time:
 - Ray generations of ray tracing
 - Intersection tests w/ implicit equations

Questions

 it seems ray tracing simulates reflection and refraction of light. However, there are also other properties of light, like diffraction or interference. Is there any technique simulating those properties?

Generalizing to Triangles

- Find of the point of intersection on the plane containing the triangle
- Determine if the point is inside the triangle
 - Barycentric coordinate method
 - Many other methods

Barycentric Coordinates

 Points in a triangle have positive barycentric coordinates:

$$\dot{p} = \alpha \dot{v}_0 + \beta \dot{v}_1 + \gamma \dot{v}_2$$
 ,where $\alpha + \beta + \gamma = 1$

Barycentric Coordinates

 Points in a triangle have positive barycentric coordinates:

$$\dot{p} = \alpha \dot{v}_0 + \beta \dot{v}_1 + \gamma \dot{v}_2$$
 ,where $\alpha + \beta + \gamma = 1$

• Benefits:

 Barycentric coordinates can be used for interpolating vertex parameters (e.g., normals, colors, texture coordinates, etc)

Ray-Triangle Intersection

A point in a ray intersects with a triangle

$$\dot{p}(t) = \dot{v}_0 + \beta(\dot{v}_1 - \dot{v}_0) + \gamma(\dot{v}_2 - \dot{v}_0)$$

- Three unknowns, but three equations
- Compute the point based on t
- Then, check whether the point is on the triangle

Pros and Cons of Ray Tracing

Advantages of Ray Tracing:

- Very simple design
- Improved realism over the graphics pipeline

Disadvantages:

- Very slow per pixel calculations
- Only approximates full global illumination
- Hard to accelerate with special-purpose H/W

Acceleration Methods

- Rendering time for a ray tracer depends on the number of ray intersection tests per pixel
 - The number of pixels X the number of primitives in the scene
- Early efforts focused on accelerating the rayobject intersection tests
- More advanced methods required to make ray tracing practical
 - Bounding volume hierarchies
 - Spatial subdivision

Bounding Volumes

- Enclose complex objects within a simple-tointersect objects
 - If the ray does not intersect the simple object then its contents can be ignored
 - The likelihood that it will strike the object depends on how tightly the volume surrounds the object.

Potentially tighter fit, but with higher computation

Hierarchical Bounding Volumes

- Organize bounding volumes as a tree
- Each ray starts with the root BV of the tree and traverses down through the tree

Spatial Subdivision

Idea: Divide space in to subregions

- Place objects within a subregion into a list
- Only traverse the lists of subregions that the ray passes through

"Mailboxing" used to avoid multiple test with

objects in multiple regions

Many types

- Regular grid
- Octree
- BSP tree
- kd-tree

Example

What about triangles overlapping the split?

Other Optimizations

- Shadow cache
- Adaptive depth control
- Lazy geometry loading/creation

Distributed Ray Tracing [Cook et al. 84]

 Cook et al. realized that ray-tracing, when combined with randomized sampling, i.e., "jittering", could be adapted to address a wide range of rendering problems:

Soft Shadows

- Take many samples from area light source and take their average
 - Computes fractional visibility leading to penumbra

Antialiasing

- The need to sample is problematic because sampling leads to aliasing
- Solution 1: super-sampling
 - Increases sampling rate, but does not completely eliminate aliasing
 - Difficult to completely eliminate aliasing without prefiltering because the world is not band-limited

Antialiasing

- Solution 2: distribute the samples randomly
 - Converts the aliasing energy to noise which is less objectionable to the eye

Jittering Results for Antialiasing

Depth-of-Field

- Rays don't have to all originate from a single point.
- Real cameras collects rays over an aperture
 - Can be modeled as a disk
 - Final image is blurred away from the focal plane
 - Gives rise to depth-of-field effects

Depth of Field

Depth of Field

- Start with normal eye ray and find intersection with focal plane
- Choose jittered point on lens and trace line from lens point to focal point

Motion Blur

- Jitter samples through time
 - Simulate the finite interval that a shutter is open on a real camera

Motion Blur

Complex Interreflection

- Model true reflection behavior as described by a full BRDF
- Randomly sample rays over the hemisphere, weight them by their BRDF value, and average them together
 - This technique is called "Monte Carlo Ray Tracing"

Summary up to mid-term exam

Summary after that

Related Courses

- CS580: Advanced Computer Graphics
 - Focus on rendering techniques that generate photo-realistic images
- CS482: Interactive Computer Graphics
 - Interactive global illumination implemented by rasterization approaches
 - Techniques used in recent games
 - I'll teach it at Fall of 2021

