
CS480: Computer Graphics
PA3: Distributed Ray Tracing

TA

Course URL:
http://jupiter.kaist.ac.kr/~sungeui/CG/

2

Design of a Ray Tracer
● Building a ray tracer is simple

● We start with a convenient vector algebra library.
● E.g., with vector and matrix of vecmat.h

● Ray object (defs.h)
● Origin and direction
● Trace (.)

●Find a closest intersection point
● Shade (.)

●Perform shading

● Light sources (defs.h)
● Supports directional light.

3

Renderable
● Every object in our ray tracer must be able to

● Intersect itself with a ray.
● Shade itself (determine the color it reflects along the

given ray).

● Current code has a renderable sphere object (sphere.h).

Class MyObject
{

.
Surface* surface;

.
intersect (ray): # returns boolean
shade(ray, lightList, objectList, bgndColor): #returns (r,g,b)

.
}

4

Surface Object (surface.cpp)

class Surface
{

RGBColor baseColor; // base color of the surface
float ka, kd, ks; // ambient, diffuse, specular coefficients
float ns; // Shineness power
float kr; // reflection coef.
float kt; // transparency coef.
float ior; // index of refraction

}

● Contains various material properties.

● Surface shader
● Accumulate contributions from lights.
● Handle reflection, refractions and other things.

5

Ray Tracing Application
● Generate primary rays.

● Refer to renderLine(.) (RayTrace.cpp)

• That’s basically all we need to write a ray tracer.
• Compared to a graphics pipeline, the code is

very simple and easy to understand.

6

Display List Parser
● We can use a simple input parser similar to the

one used for Wavefront OBJ files. Here is an
example input file.

eye 0 2 10
lookat 0 0 0
up 0 1 0
fov 30
background 0.2 0.8 0.9
light 1 1 1 ambient
light 1 1 1 directional -1 -2 -1
light 0.5 0.5 0.5 point -1 2 -1

surface 0.7 0.2 0.8 0.5 0.4 0.2 10.0 0.0 0.0 1.0
sphere -2 -3 -2 1.5
sphere 0 -3 -2 1.5
sphere 2 -3 -2 1.5
sphere -1 -3 -1 1.5
sphere 1 -3 -1 1.5
sphere -2 -3 0 1.5
sphere 0 -3 0 1.5
sphere 2 -3 0 1.5
sphere -1 -3 1 1.5
sphere 1 -3 1 1.5
sphere -2 -3 2 1.5
sphere 0 -3 2 1.5
sphere 2 -3 2 1.5

surface 0.7 0.2 0.2 0.5 0.4 0.2 3.0 0.0 0.0 1.0
sphere -1 -3 -2 1.5
sphere 1 -3 -2 1.5
sphere -2 -3 -1 1.5
sphere 0 -3 -1 1.5
sphere 2 -3 -1 1.5
sphere -1 -3 0 1.5
sphere 1 -3 0 1.5
sphere -2 -3 1 1.5
sphere 0 -3 1 1.5
sphere 2 -3 1 1.5
sphere -1 -3 2 1.5
sphere 1 -3 2 1.5

surface 0.4 0.4 0.4 0.1 0.1 0.6 100.0 0.8 0.0 1.0
sphere 0 0 0 1

7

Usage of Codes
●RT.exe balls.ray

● Extend codes to support PA3 requirements.
● Please go over lecture materials.

8

Requirements
● Extend the surface shader to handle

refraction.
● For Sphere case, note that the ray can hit inside

of the Sphere.

9

Requirements
● Implement a “Triangle” Object.

● Add texture mapping.
● Reflection/refraction is not required the

textured triangles.

10

Requirements
● Add a randomized sampling method for

enhanced rendering.
● Antialiasing: perform jittered sampling on the

pixel area.
● Soft-shadows: imitate rectangular area light.

4*4 jittered sampling for antialiasing and soft-shadows.

	Slide Number 1
	Design of a Ray Tracer
	Renderable
	Surface Object (surface.cpp)
	Ray Tracing Application
	Display List Parser
	Usage of Codes
	Requirements
	Requirements
	Requirements

