CS580:

Graduate-Level Computer Graphics

- Focus on rendering

Sung-Eui Yoon (윤성의)

Course URL:

http://sglab.kaist.ac.kr/~sungeui/GCG

About the Instructor

- 2012~: IEEE Senior member
- 2011~2013: 이원부교수
- Joined KAIST at 2007
- B.S., M.S. at Seoul National Univ.
- Ph.D. at Univ. of North Carolina-Chapel Hill
- Post. doc at Lawrence Livermore Nat'l Lab
- Main research focus
 - Handling of massive geometric data for various computer graphics and geometric problems

About the Instructor

- Contact info
 - Email: sungeui@gmail.com
 - Office: 3432 at CS building
 - Homepage: http://sglab.kaist.ac.kr/~sungeui

Class Information

- Class time
 - 4:00pm ~ 5:15pm on TTh
- Office hours
 - 2:30pm ~ 3:30pm on TTh
 - Or right after class
- TA
 - 김의태 <mutal09@kaist.ac.kr>
 - Office hour: right after the class on TTh
 - Room: 2413

Overview

We will discuss various parts of computer graphics

Modelling

Simulation & Rendering

Image

Computer vision inverts the process Image processing deals with images

Application of Computer Graphics

- Games
- Movies and film special effects
- Product design and analysis
- Medical applications
- Scientific visualization

Games

2D game

3D shooting game

Game Industry at Korea

One of biggest IT sectors in Korea

창원에 엔씨소프트 프로야구단 생긴다(종합)

새롭게 창단하는 구단은 모기업의 당기 순이 익이 1천억원 이상이거나, ...

KBO 이사회 개최

(서울=연합뉴스) 이상학 기자 =11일 오전 서울 강남구 도곡동 야구회관에서 열린 KBO 이사회에서 유영구 총재가 회의를 주재하고 있다. 8개 구단 사장단이 참석한 가운데 열린 이날 이사회에서는 9구단 승인 여부 등을 논의한다,2011,1,11 leesh@yna,co,kr

Movies and Film Special Effects

Toy story

Matrix

3D Movies

Avatar

3D TV

Samsung 3D TV

Product Design and Analysis

Computer-aided design (CAD)

Medical Applications

Visualizing data of CT, MRI, etc

Rapidia homepage

Medical Applications

Visualizing data of CT, MRI, etc

Wikipedia

Mouse skull (CT)

Scientific Applications

Weather visualization

LLNL

About the Course

- We will focus on the following things:
 - Study basic concepts of physically-based rendering
 - Discuss various basic concepts of computer graphics
 - Implement a recent technique, and discuss its

pros and cons

Photo-Realistic Rendering

Achieved by simulating light and material interactions

- Rendering equation
 - Mathematical formulation of light and material interactions

Global Illumination (GI)

- GI algorithms solve the rendering equation
 - Generate 2D image from 3D scene

Emission (light sources)
Geometry (objects)
BRDF (materials)

Classic Methods of GI

- Ray tracing
 - Introdued by Whitted in 1980
- Radiosity
 - Introduced in 1984
- Monte Carlo rendering

Ray Tracing

Assume perfect specular or diffuse material

Radiosity

Assume diffuse inter-reflections

Advanced Global Illumination

- Extend to handle more realistic materials than just perfect specular/diffuse
 - Classic ray tracing and classic radiosity are basic building blocks

from Pixar movie

Scalable GI

- How can we handle complexity?
 - Many objects
 - Many triangles
 - Many lights
 - Complex BRDFs
 - Dynamic scenes, etc.
- Can we achieve interactive GI on commodity hardware?

Some of Topic Lists

- Ray tracing
- Rendering pipeline
- Path tracing
- BRDF
- Rendering equations
- Monte Carlo method
- Shading
- Textures
- Shadow

- Lighting and shading
- Radiosity
- GPU acceleration
- Reyes architecture
- Tessellation and subdivision
- Sampling and reconstruction
- Realistic rendering

Prerequisites

- Basic programming skill
- Basic understanding on data structures (e.g., stack) and linear algebra (e.g., matrix multiplication)
- If you are not sure, please consult the instructor at the end of the course

Resource

- No textbook
- Reference
 - Physically based renderig, Matt Pharr et al.
 - Advanced Global Illumination, Philip Dutre et al. 2nd edition
 - Realistic Image Synthesis Using Photon Mapping, Henrik Jensen
 - Realistic Ray Tracing, 2nd edition, Peter Shirley et al.

Other Reference

- Technical papers
 - Graphics-related conference (SIGGRAPH, etc)
 - http://kesen.huang.googlepages.com/
- SIGGRAPH course notes and video encore
- Course homepages
- Google or Google scholar

Course Overview

- 3/4 of lectures and 1/4 of student presentations
 - Mid-term & final-term exams with a few quiz
 - Two programming assignments
 - A paper presentation
 - Team project

What you will do

- Paper presentation and final team project
 - Make a team of two or three members
 - Choose a topic for the team, and each team member presents a paper related to it
 - All the team members implement techniques of a paper
 - Role of each team member should be clear
 - Present what the team did for the team project

Course Awards

- Best speaker and best project
 - Provide small gifts

Grading

- Quiz, assignments, and exams: 60%
- Class presentations: 20%
- Final project: 20%
- Late policy
 - No score for late submissions
 - Submit your work before the deadline!
- Instructor and students will evaluate presentations and projects
 - Instructor: 50% weights
 - Students: 50% weights

Class Attendance Rule

- Late two times → count as one absence
- Every two absences → lower your grade (e.g., A- → B+)
- To check attendance, I'll call your names or take pictures
- If you are in situations where you should be late, notify earlier

Honor Code

- Collaboration encouraged, but assignments must be your own work
- Cite any other's work if you use their code

Official Language in Class

English

- I'll give lectures in English
- I may explain again in Korean if materials are unclear to you
- You are also recommended to use English, but not required

Schedule

- Please refer the course homepage:
 - http://sglab.kaist.ac.kr/~sungeui/GCG/

Homework for Each Class

- Go over the next lecture slides before the class
 - Just 10 min ~ 20 min for this should be okay

Homework

- Watch 2 SIGGRAPH Videos
 - Write their abstracts and submit at the beginning of every Tue. class
- Example of an abstract
 - Just one paragraph for each abstract

Title: XXX XXXX XXXX

Abstract: this video is about accelerating the performance of ray tracing. To achieve its goal, they design a new technique for reordering rays, since by doing so, they can improve the ray coherence and thus improve the overall performance.

About You

- Name
- Your (non hanmail.net) email address
- What is your major?
- Previous graphics experience
- Any questions

Next Time

Rasterization based classic rendering pipeline

