
CS580:
Classic Rendering Pipeline

Sung-Eui Yoon
(윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/GCG/

2

Course Objectives
●Understand classic rendering pipeline

● Just high-level concepts, not all the details
● Brief introduction of common under. CG

● Know its pros and cons

3

The Classic Rendering Pipeline
● Adopted in OpenGL and DirectX

● Most of games are based on this
pipeline

●Object primitives defined by
vertices fed in at the top

● Pixels come out in the display at
the bottom

4

The Classic Rendering Pipeline

5

Your New World in OpenGL
● A 2D square ranging from (-1, -1) to (1, 1)
● You can draw in the box with just a few

lines of code

6

Code Example

OpenGL Code:

glColor3d(0.0, 0.8, 1.0);

glBegin(GL_POLYGON);

glVertex2d(-0.5, -0.5);

glVertex2d(0.5, -0.5);

glVertex2d(0.5, 0.5);

glVertex2d(-0.5, 0.5);

glEnd();

7

OpenGL Command Syntax
● glColor3d(0.0, 0.8, 1.0);

Suffix Data Type Corresponding
C-Type

OpenGL
Type

b 8-bit int. singed char GLbyte

s 16-bit int. short GLshort

i 32-bit int. int GLint

f 32-bit float float GLfloat

d 64-bit double double GLdouble

ub 8-bit unsinged int. unsigned char GLubyte

us 16-bit unsigned int. unsigned short GLushort

ui 32-bit unsigned int. unsigned int GLuint

8

OpenGL Code:

glColor3d(0.0, 0.8, 1.0);

glBegin(GL_POLYGON);

glVertex2d(-0.5, -0.5);

glVertex2d(0.5, -0.5);

glVertex2d(0.5, 0.5);

glEnd()

Another Code Example

9

Drawing Primitives in OpenGL

The red book

10

OpenGL Code:
glColor3d(0.8, 0.6, 0.8);

glBegin(GL_LINE_LOOP);

for (i = 0; i < 360;i = i + 2)

{

x = cos(i*pi/180);

y = sin(i*pi/180);

glVertex2d(x, y);

}

glEnd();

Yet Another Code Example

11

● Triangles can approximate any 2-dimensional
shape (or 3D surface)
● Polygons are a locally linear (planar) approximation

● Improve the quality of fit by increasing the
number edges or faces

Triangle Representation, Mesh

12

Modeling Transforms
● Start with 3D models defined in

modeling spaces with their own
modeling frames

● Modeling transformations orient models
within a common coordinate frame
called world space
● All objects, light sources, and the camera

live in world space

13

Illumination
● Illuminate potentially visible objects
● Final rendered color is determined by

object’s orientation, its material
properties, and the light sources in the
scene

14

Illumination
● Illuminate potentially visible objects
● Final rendered color is determined by

object’s orientation, its material
properties, and the light sources in the
scene

● Lighting
● Local shading model considering

direct illumination

15

OpenGL’s Illumination Model





numLights

1j

nj
s

j
sj

j
d

j
d

j
a

j
ar ,0)))RVmax((Ik),0)LNmax((IkI(kI sˆˆˆˆ

From Wikipedia

16

Ambient Light Source
● A simple hack for indirect illumination

● Incoming ambient illumination (Ii,a) is constant
for all surfaces in the scene

● Reflected ambient illumination (Ir,a) depends
only on the surface’s ambient reflection
coefficient (ka) and not its position or
orientation

● These quantities typically specified as (R, G, B)
triples

r ,a a i,aI k I

17

Ideal Diffuse Reflection
● Ideal diffuse reflectors (e.g., chalk)

● Reflect uniformly over the hemisphere
● Reflection is view-independent
● Very rough at the microscopic level

● Follow Lambert’s cosine law

18

Lambert’s Cosine Law
● The reflected energy from a small surface area

from illumination arriving from direction is
proportional to the cosine of the angle between
and the surface normal

L̂
L̂

L̂

N̂



)LN(I

cosθII

i

ir

ˆˆ 



19

Specular Reflection
● Specular reflectors have a bright, view

dependent highlight
● E.g., polished metal, glossy car finish, a mirror
● At the microscopic level a specular reflecting

surface is very smooth
● Specular reflection obeys Snell’s law

Image source: astochimp.com and wiki

20

Viewing Transformations
●Maps points from world space to

eye space

● Viewing position is transformed to
the origin

● Viewing direction is oriented along
some axis

21

Clipping and Projection
● We specify a volume called a viewing

frustum
● Map the view frustum to the unit cube
● Clip objects against the view volume,

thereby eliminating geometry not visible in
the image

● Project objects
into two-dimensions

22

Rasterization and Display
● Transform to screen space
● Rasterization converts objects pixels

23

Why we are using rasterization?
● Efficiency
●Reasonably quality

24

Fermi GPU Architecture

16 SM (streaming processors)

512 CUDA cores

Memory interfaces

25

26

But what about other visual
cues?
● Lighting

● Shadows
● Shading: glossy, transparency

● Color bleeding, etc.

●Generality

from Henrik’s homepage

27

Recursive Ray Casting
●Gained popularity in when

Turner Whitted (1980)
recognized that recursive
ray casting could be used
for global illumination
effects

28

Any Questions?
● Come up with one question on what we

have discussed in the class and submit at
the end of the class
● 1 for already answered questions
● 2 for typical questions
● 3 for questions with thoughts
● 4 for questions that surprised me

29

Homework
●Go over the next lecture slides before the

class
●Watch 2 SIGGRAPH videos and submit your

summaries every Tue. class
● Just one paragraph for each summary

Example:
Title: XXX XXXX XXXX
Abstract: this video is about accelerating the
performance of ray tracing. To achieve its goal, they
design a new technique for reordering rays, since by
doing so, they can improve the ray coherence and thus
improve the overall performance.

30

Course Objectives were:
●Understand classic rendering pipeline

● Just high-level concepts, not all the details
● Brief introduction of common under. CG

● Know its pros and cons

31

Next Time
●Ray tracing

