CS580:
Classic Rendering Pipeline

Sung-Eul Yoon
(24 2l)

Course URL.:
http://sglab.kaist.ac.kr/~sungeui/GCG/

KAIST

Course Objectives

e Understand classic rendering pipeline

e Just high-level concepts, not all the details |

e Brief introduction of common under. CG
e Know Its pros and cons

- Modeling
- Transformations

: Trival
- Rejection
: 1

- llumination

1

. Viewing
- Transformation

]

Clipping

Projection

¥

Rasterization

§

Display

The Classic Rendering Pipeline

& Vodeing e Adopted in OpenGL and DirectX
] e Most of games are based on this
'\ Rejecton pipeline
|| ¢t
i e Object _ defined by
Transtormaton vertices fed in at the top
M e Pixels come out in the display at
4 the bottom
¥
R
¥
Display MIST

The Classic Rendering Pipeline

KAIST

Your New World in OpenGL

e A 2D square ranging from (-1, -1) to (1, 1)

e You can draw In the box with just a few
lines of code

KAIST

Code Example

B Simple OpenGL Examples @@ O pe n G L COd e :

glColor3d(0.0, 0.8, 1.0);

glBegin(GL_POLYGON);
glVertex2d(-0.5, -0.5);
glVertex2d(0.5, -0.5);
glVertex2d(0.5, 0.5);
glVertex2d(-0.5, 0.5);

glEnd();

KAIST

OpenGL Command Syntax

¢ glColor3d(0.0, 0.8, 1.0);

Suffix Data Type Corresponding OpenGL
C-Type Type

b 8-bit int. singed char GLbyte
S 16-bit int. short GLshort
i 32-bit int. int GLint
f 32-bit float float GLfloat
d 64-bit double double GLdouble
ub 8-bit unsinged int. unsigned char GLubyte
us 16-bit unsigned int. unsigned short GLushort
ui 32-bit unsigned int. unsigned int GLuint

KAIST

Another Code Example

B Simple OpenGL Examples @@ O pe n G L COd e .

glColor3d(0.0, 0.8, 1.0);

glBegin(GL_POLYGON) ;
glVertex2d(-0.5, -0.5);
glVertex2d(0.5, -0.5);
glVertex2d(0.5, 0.5);

glEnd(Q)

8 KAIST

Drawing Primitives in OpenGL

Ve

Voo Voe

Vge

Ve

Vge

__GLLINE_LOOP

V4 VS

VE
%
Va oy,
Wi i
GL_QUADS ~ GL_QUAD_STRIP GL_POLYGON

Figure 2-7

Geometric Primitive Types

The red book

KAIST

10

Yet Another Code Example

OpenGL Code:

B Simple OpenGL Examples

glBegin(GL_LINE_LOOP);
for (1 = 0; 1 < 360;1

X = cos(1*pi1/180);
y = sin(i1*pi1/180);
glVertex2d(x, VvY);
+
glEndQ);

CLI— o glColor3d(0.8, 0.6, 0.8);

1+ 2)

KAIST

Triangle Representation, Mesh

e Triangles can approximate any 2-dimensional
shape (or 3D surface)

e Polygons are a locally linear (planar) approximation

e Improve the quality of fit by increasing the
number edges or faces

11 KAIST

12

Modeling Transforms

waeng | @ Start with 3D models defined in
. modeling spaces with their own
modeling frames

e Modeling transformations orient models
within a common coordinate frame

called world space

e All objects, light sources, and the camera
live in world space

E’i’!‘l‘ sSeesen utp’ll.- ﬂw?

13

llHlumination

e llluminate potentially visible objects

e Final rendered color is determined by
object’s orientation, its material

B properties, and the light sources in the

llumination scene

lHlumination

e llluminate potentially visible objects

e Final rendered color is determined by
object’s orientation, its material
TRE properties, and the light sources in the
llumination l’. scene
e Lighting
e Local shading model considering
direct illumination

Lambert's Cosine Law

14

OpenGL’s lllumination Model

nuleghts

= (kI +kJIJmax((N L)O)+k‘|‘max((V R) ,0))

Ambient Diffuse Specular = Phong Reflection

From Wikipedia

15 KAIST

16

Ambient Light Source

e A simple hack for indirect illumination

¢ Incoming ambient illumination (I;) Is constant
for all surfaces in the scene

e Reflected ambient illumination (I, ,) depends
only on the surface’s ambient reflection
coefficient (k,) and not its position or
orientation 2 =Kol

e These quantities typically specified as (R, G, B)

triples ‘

KAIST

17

ldeal Diffuse Reflection

e Ideal diffuse reflectors (e.g., chalk)
e Reflect uniformly over the hemisphere
e Reflection is view-independent
e Very rough at the microscopic level

e Follow Lambert’s cosine law

Incoming Light Rays Outgoing Light Rays

KAIST

Lambert’'s Cosine Law

e The reflected energy from a small surface area
from illumination arriving from direction [is
proportional to the cosine of the angle between [
and the surface normal

n

N
| ~l.cos@ 6 L
~|(NeL) 7
Lambert's Cosine Law

n T
- '.‘, ’.“ "‘ | \\ "I il* '," S Fr
\\ U f " \ ’ \ {) 111 7
. ¥ * v » . AYll/S %\ {7
- " " o > - T B F " . W | (17> W L
'*—-,,-;.{.-;-A" - '».:\E.—,x' — i.—,-- - . e

18 KAIST

Specular Reflection

e Specular reflectors have a bright, view
dependent highlight

e E.g., polished metal, glossy car finish, a mirror

e At the microscopic level a specular reflecting
surface is very smooth

e Specular reflection obeys Snell’s law

19 Image source: astochimp.com and wiki KAIST

Viewing Transformations

e Maps points from world space to
eye space

e Viewing position iIs transformed to
the origin

R e Viewing direction is oriented along

Transfnnngtinn some aX| S

E‘itr seesn A vrp?& l,.'h'.l?

20

KAIST

Clipping and Projection

e We specify a volume called a viewing
frustum

e Map the view frustum to the unit cube

e Clip objects against the view volume,
thereby eliminating geometry not visible In
the image

e Project objects
Clipping Into two-dimensions

. Projection

21

Rasterization and Display

e Transform to screen space
e Rasterization converts objects pixels

o
~ Rasterization

53 .*
- -.: Display l MIST

23

Why we are using rasterization?

e Efficiency
e Reasonably quality

KAIST

24

Fermi GPU Architecture

16 SM (streaming processors)

DRAMIF
dNNYyHA

HOSTIF
dINYHd

L2

dINY¥HA

dNNYHa

512 CUDA cores

Memory interfaces

KAIST

Where Rasterization Is
e

From Battlefield: Bad Company, EA Digital lllusions

CE AB
From Eric Haines K/AST

26

But what about other visual
cues”?

e Lighting
e Shadows
e Shading: glossy, transparency

e Color bleeding, etc.

e Generality

HEMRIK LIAHM JEMSEM 1336
from Henrik’'s homepage MIST

27

Recursive Ray Casting

e Gained popularity in when
Turner Whitted (1980)
recognized that recursive
ray casting could be used

for global illumination
effects

Any Questions?

e Come up with one question on what we
have discussed In the class and submit at
the end of the class

e 1 for already answered questions
e 2 for typical questions

e 3 for questions with thoughts

e 4 for questions that surprised me

KAIST

Homework

e Go over the next lecture slides before the
class

e Watch 2 SIGGRAPH videos and submit your
summaries every Tue. class

e Just one paragraph for each summary

Example:

Title: XXX XXXX XXXX

Abstract: this video is about accelerating the
performance of ray tracing. To achieve its goal, they
design a new technique for reordering rays, since by

doing so, they can improve the ray coherence and thus
improve the overall performance.

29 KAIST

30

Course Objectives were:

e Understand classic rendering pipeline

e Just high-level concepts, not all the detalls |

e Brief introduction of common under. CG
e Know Its pros and cons

- Modeling
- Transformations

: Trival
- Rejection
: 1

- llumination

1

. Viewing
- Transformation

]

Clipping

~ Projection

¥

Rasterization

§

Display

31

Next Time

e Ray tracing

KAIST

