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Class Objectives

e Understand a basic ray tracing
e Know the Phong illumination model

e Implement its acceleration data structure
and know how to use it
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The Classic Rendering Pipeline
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Why we are using rasterization?

e Efficiency
e Reasonably quality
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Fermi GPU Architecture

16 SM (streaming processors)
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512 CUDA cores
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Where Rasterization Is
e

From Battlefield: Bad Company, EA Digital lllusions

CE AB
From Eric Haines K/AST



But what about other visual
cues”?

e Lighting
e Shadows
e Shading: glossy, transparency

e Color bleeding, etc

from Henrik’'s homepage MIST
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Recursive Ray Casting

e Gained popularity in when
Turner Whitted (1980)
recognized that recursive
ray casting could be used

for global illumination
effects




Ray Casting and Ray Tracing

e Trace rays from eye Into scene
e Backward ray tracing

e Ray casting used to compute visibility at
the eye

e Perform ray tracing for arbitrary rays
needed for shading
e Reflections
e Refraction and transparency
e Shadows
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Basic Algorithms

e Rays are cast from the eye point through
each pixel in the image
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Shadows

e Cast ray from the intersection point to each
light source

e Shadow rays
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From kavita’s slides
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Reflections

e If object specular, cast secondary reflected
rays
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From kavita’s slides
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Refractions

e If object tranparent, cast secondary
refracted rays
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From kavita’s slides
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An Improved lllumination Model
[Whitted 80]

e Phong illumination model
numLights

L= > (K +ki(NeL ) +KIL(V eR)™)
j=1
e Whitted model
numLights

b= > (K +ki(NoL,)) +k S+k,T

i
j=1

e S and T are intensity of light from reflection
and transmission rays

e Ks and Kt are specular and transmission
coefficient
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OpenGL’s lllumination Model

nuleghts

= (kI +kJIJmax((N L)O)+k‘|‘max((V R) ,0))

Ambient Diffuse Specular = Phong Reflection

From Wikipedia
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Ambient Light Source

e A simple hack for indirect illumination

¢ Incoming ambient illumination (I; ) Is constant
for all surfaces in the scene

e Reflected ambient illumination (I, ,) depends
only on the surface’s ambient reflection
coefficient (k,) and not its position or
orientation 2 =Kol

e These quantities typically specified as (R, G, B)

triples ‘
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ldeal Diffuse Reflection

e Ideal diffuse reflectors (e.g., chalk)
e Reflect uniformly over the hemisphere
e Reflection is view-independent
e Very rough at the microscopic level

e Follow Lambert’s cosine law

Incoming Light Rays Outgoing Light Rays
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Lambert’'s Cosine Law

e The reflected energy from a small surface area
from illumination arriving from direction [ is
proportional to the cosine of the angle between [
and the surface normal
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Computing Diffuse Reflection

e Constant of proportionality depends on
surface propertles -

o =Ko (N L)

e The constant k, specifies how much of the
Incident light I, is diffusely reflected

Diffuse reflection for varying light directions

e When (N-0)<0 the incident light is blocked by
the surface itself and the diffuse reflection is O
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Specular Reflection

e Specular reflectors have a bright, view
dependent highlight

e E.g., polished metal, glossy car finish, a mirror

e At the microscopic level a specular reflecting
surface is very smooth

e Specular reflection obeys Snell’s law

20 Image source: astochimp.com and wiki KAIST



Snell’s Law

e The relationship between the angles of
the incoming and reflected rays with the

normal iIs given by: N

L o R
nsing =n,sing, 9'/ %

e N, and n, are the indices of refraction for the
Incoming and outgoing ray, respectively

e Reflection is a special case where n, = n_ so 6,
= 6

e The incoming ray, the surface normal, and the
reflected ray all lie in a common plane

KAIST



Computing the Reflection Vector

e The vector R can be computed from the
iIncoming light direction and the surface
normal as shown below:

R =(2(N-L))N-L

e How?

2(N-L))N
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Non-ldeal Reflectors

e Snell’s law applies only to /deal specular
reflectors
e Roughness of surfaces causes highlight to
“spread out”

e Empirical models try to simulate the
appearance of this effect, without trying to
capture the physics of it

N
L1 A

A4
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Phong lllumination

e One of the most commonly used _
IHlumination models in computer graphics

e Empirical model and does not have no physical
basis \RY

| =k_l.(cos ¢)™ L 5 R
=kl (V R)
e (\/) is the direction to the viewer
e (VeR) is clamped to [0,1]
e The specular exponent n, controls how quickly
the highlight falls off
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Effect of Specular Exponent

e How the shape of the highlight changes
with varying ng
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Examples of Phong

varying light direction

varying specular exponent
KAIST



Blinn & Torrance Variation

e Jim Blinn introduced another approach for
computing Phong-like illumination based
on the work of Ken Torrance:
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e H is the half-way vector that bisects the
light and viewer directions
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Putting it All Together

r
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An Improved lllumination Model
[Whitted 80]

e Phong illumination model
numLights

L= > (K +ki(NeL ) +KIL(V eR)™)
j=1
e Whitted model
numLights

b= > (K +ki(NoL,)) +k S+k,T

i
j=1

e S and T are intensity of light from reflection
and transmission rays

e Ks and Kt are specular and transmission
coefficient
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Acceleration Methods for Ray
Tracing

e Rendering time for a ray tracer depends on the
number of ray intersection tests per pixel

e The number of pixels X the number of primitives in the scene

e Early efforts focused on accelerating the ray-
object intersection tests

e Ray-triangle intersection tests

e More advanced methods required to make ray

tracing practical G T
e Bounding volume hierarchies e wr-m—

e Spatial subdivision (e.g., kd-trees)




Bounding Volumes

e Enclose complex objects within a simple-to-
Intersect objects

e |If the ray does not intersect the simple object then its contents
can be ignored

e The likelihood that it will strike the object depends on how
tightly the volume surrounds the object.

e Spheres are simple, but not tight

e Axis-aligned bounding boxes often better
e Can use nested or hierarchical bounding volumes

Spherical Bounding Volumes

. W

32

Axis-Aligned
Bounding Boxes
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Bounding Volumes

e Sphere [Whitted80]

e Cheap to compute
e Cheap test
e Potentially very bad fit

e Axis-Alighed Bounding Box
e Very cheap to compute
e Cheap test
e Tighter than sphere

KAIST



Bounding Volumes

e Oriented Bounding Box
e Fairly cheap to compute
e Fairly Cheap test
e Generally fairly tight
e Slabs / K-dops
e More expensive
to compute
e Fairly cheap test \

e Can be tighter than OBB \
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Hierarchical Bounding Volumes

e Organize bounding volumes as a tree

e Choose a partitioning plane and distribute
triangles into left and right nodes

e Each ray starts with the scene BV and
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Spatial Subdivision

|dea: Divide space in to subregions
e Place objects within a subregion into a list

e Only traverse the lists of subregions that the ray
passes through

“Mallboxmg” used to av0|d multlple test W|th

e Many types
e Regular grid

e Octree
e BSP tree
e kd-tree
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Overview of kd-Trees

e Binary spatial subdivision
(special case of BSP tree)

e Split planes aligned on main axis
e Inner nodes: subdivision planes
e Leaf nodes: triangle(s)
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What about triangles overlapping the split?
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Split Planes

e How to select axis & split plane?
e Largest dimension, subdivide in middle
e More advanced.:
eSurface area heuristic

e Makes large difference
e 50%06-100%0 higher overall speed
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Median vs. SAH

(from [Wald04])
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Ray Tracing with kd-tree

e Goal: find closest hit with scene

e Traverse tree front to back
(starting from root)

e At each node:
e If leaf: intersect with triangles
e If Inner: traverse deeper

KAIST



Classic Ray Tracing

e Gathering approach = ToyRayTracer |~ OJE3

e From lights, reflected, and refracted
directions

e Pros of ray tracing
e Simple and improved realism over

the rendering pipeline

e Cons:
e Simple light model, material, and light propagation
e Not a complete solution
e Hard to accelerate with special-purpose H/W

.  KAIST




History

e Problems with classic ray tracing
e Not realistic
e View-dependent

e Radiosity (1984)
e Global illumination in diffuse scenes

e Monte Carlo ray tracing (1986)
e Global illumination for any environment
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Class Objectives were:

e Understand a basic ray tracing
e Know the Phong illumination model

e Implement its acceleration data structure
and know how to use it
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Any Questions?

e Come up with one question on what we
have discussed In the class and submit at
the end of the class

e 1 for already answered questions
e 2 for typical questions

e 3 for questions with thoughts

e 4 for questions that surprised me
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Homework

e Go over the next lecture slides before the
class

e Watch 2 SIGGRAPH videos and submit your
summaries every Tue. class

e Just one paragraph for each summary

Example:

Title: XXX XXXX XXXX

Abstract: this video is about accelerating the
performance of ray tracing. To achieve its goal, they
design a new technique for reordering rays, since by

doing so, they can improve the ray coherence and thus
improve the overall performance.
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Next Time

e Radiosity
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