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Class Objectives

e Understand a basic structure of Monte
Carlo ray tracing

e Russian roulette for its termination
e Stratified sampling

e Quasi-Monte Carlo ray tracing
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Why Monte Carlo?

e Radiace is hard to evaluate

From kavita’s slides

e Sample many 'pa hs
e Integrate over all incoming directions

e Analytical integration is difficult
e Need numerical techniques
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Rendering Equation
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How to compute?
L(x—>0) =?

Check for L (x—0)

Now add L (x—0) =
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How to compute?

e Use Monte Carlo

e Generate random directions on hemisphere
Q, using pdf p(W)
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How to compute?

Generate random
directions ¥,

— evaluate brdf
— evaluate cosine term
— evaluate L(x<¥,)
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How to compute?

evaluate L(x<V;)?

Radiance Is invariant along
straight paths

vp(x, ;) = first visible point

L(x<-'¥;) = L(vp(x, ¥;) = ¥))
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How to compute? Recursion ...

Recursion ....

Each additional bounce
adds one more level of
Indirect light

Handles ALL light transport

“Stochastic Ray Tracing”
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When to end recursion?

[ ]
From kavita’s slides

e Contributions of further light bounces
become less significant

e Max recursion
e Some threshold for radiance value

o If we just ignore them, estimators will be
biase
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Russian Roulette

Integral

Estimator

Variance
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Russian Roulette

e Pick absorption probability, a = 1-P
e Recursion is terminated

e 1- a is commonly to be equal to the

reflectance of the material of the surface

e Darker surface absorbs more paths
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Algorithm so far

e Shoot primary rays through each pixel

e Shoot indirect rays, sampled over
hemisphere

e Terminate recursion using Russian Roulette
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Pixel Anti-Aliasing

e Compute radiance only at the
center of pixel

e Produce jaggies

e Simple box filter
e The averaging method

o }\I’IVS want to evaluate using
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Stochastic Ray Tracing

e Parameters
e Num. of starting ray per pixel

e Num. of random rays for each surface point
(branching factor)

e Path tracing
e Branching factor =1
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Path Tracing

1 ray / pixel 10 rays / pixel 100 rays / pixel

From kavita’s slides

¢ Pixel sampling + light source sampling
folded into one method
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Algorithm so far

e Shoot primary rays through each pixel

e Shoot indirect rays, sampled over
hemisphere

e Path tracing shoots only 1 indirect ray
e Terminate recursion using Russian Roulette
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Algorithm
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Performance

e Want better quality with smaller # of
samples

e Fewer samples/better performance
e Stratified sampling
e Quasi Monte Carlo: well-distributed samples

e Faster convergence
e Importance sampling
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PA2

Uniform sampling Adaptive sampling Reference
(64 samples per pixel)
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Stratifled Sampling

Samples could be arbitrarily close

F

Split integral In subparts

Estimator

Variance:
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Stratifled Sampling

9 slladw 1'3};5 9 shadow rays
not stratified stratified
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Stratifled Sampling

36 shadow rays 36 shadow rays
not stratified stratified
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High Dimensions

— N° samples

e Problem for higher dimensions

e Sample points can still be arbitrarily close
to each other
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Higher Dimensions

e Stratified grid sampling

— N9 samples

e N-rooks sampling

— N samples
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N-Rooks Sampling - 9 rays

not
stratified

stratified N-Rooks




N-Rooks Sampling - 36 rays

stratified

stratified N-Rooks




Quasi Monte Carlo

 Eliminates randomness to find well-
distributed samples

« Samples are determinisitic but “appear”
random
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Quasi-Monte Carlo (QMC)

* Notions of variance, expected value don't
apply

* |Introduce the notion of discrepancy
— Discrepancy mimics variance

— E.g., subset of unit interval [0,X]
» Of N samples, n are in subset
= Discrepancy: [x-n/N|

— Mainly: “it looks random”
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Example: van der Corput
Sequence

e One of simplest low-discrepancy sequences

e Radical inverse function, ®,(n)
e Givenn= ) db™,

o (Db(n) = 0-d1d2d3 L dn
o E.g., ®,(i): 111010, > 0.010111

e van der Corput sequence, x;=®,(i)
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Example: van der Corput

Sequence
e One of simplest low-discrepancy sequences
* X;=D,(i)

i Base 2 D, (i)

1 1 1 =1/2

2 10 01 =1/4

3 11 11 =3/4

4 100 .001 =1/8

5 101 .101 = 5/8
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Halton and Hammersley

e Halton
o X;=(D,(i), D3(i), Ps5(i), .oy Pprime(l))
e Hammersley
o X =(1/N, ®,(i), ®3(i), P5(i); ++rs Pprime(i))
e Assume we know the number of samples, N
e Has slightly lower discrepancy

o

Halton = .% s S s Sl Hammersley
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Why Use Quasi Monte Carlo?

e No randomness
e Much better than pure Monte Carlo method
e Converge as fast as stratified sampling
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Performance and Error

e Want better quality with smaller number of
samples

e Fewer samples - better performance
e Stratified sampling
e Quasi Monte Carlo: well-distributed samples

e Faster convergence
e Importance sampling: next-event estimation
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Class Objectives were:

e Understand a basic structure of Monte
Carlo ray tracing

e Russian roulette for its termination
e Stratified sampling

e Quasi-Monte Carlo ray tracing
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