CS580: Monte Carlo Ray Tracing: Part I

Sung-Eui Yoon (윤성의)

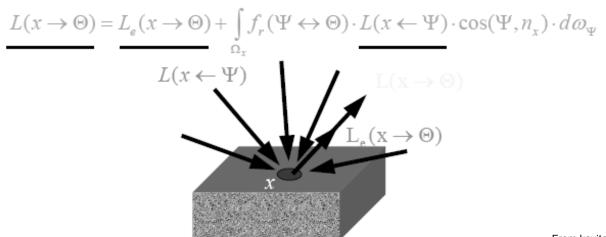
Course URL: http://sglab.kaist.ac.kr/~sungeui/GCG

Class Objectives

- Understand a basic structure of Monte Carlo ray tracing
 - Russian roulette for its termination
 - Stratified sampling
- Quasi-Monte Carlo ray tracing

Why Monte Carlo?

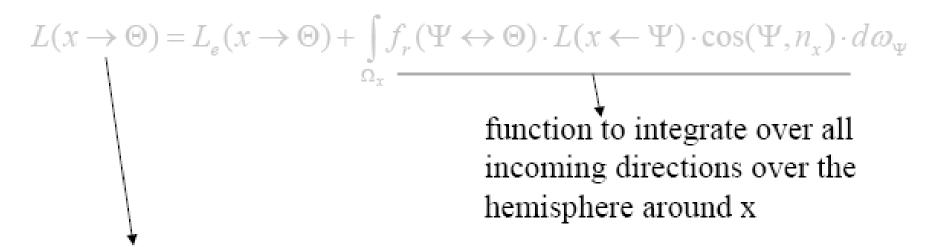
Radiace is hard to evaluate



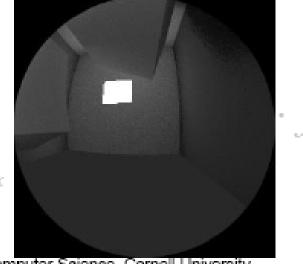
From kavita's slides

- Sample many paths
 - Integrate over all incoming directions
- Analytical integration is difficult
 - Need numerical techniques

Rendering Equation



Value we want



@ Kavita Bala, Computer Science, Cornell University

$$L(x\rightarrow\Theta) = ?$$

Check for $L_e(x\rightarrow \Theta)$

Now add $L_r(x \rightarrow \Theta) =$

$$\int_{\Gamma_r} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_x) \cdot d\omega_{\Psi}$$

- Use Monte Carlo
- Generate random directions on hemisphere Ω_X using pdf p(Ψ)

$$L(x \to \Theta) = \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_x) \cdot d\omega_{\Psi}$$

$$\langle L(x \to \Theta) \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r(\Psi_i \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi_i) \cdot \cos(\Psi_i, n_x)}{p(\Psi_i)}$$

Generate random directions Ψ_i

$$\langle L \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r(\dots) \cdot L(x \leftarrow \Psi_i) \cdot \cos(\dots)}{p(\Psi_i)}$$

- evaluate brdf
- evaluate cosine term
- evaluate L(x←Ψ_i)

- evaluate L(x←Ψ_i)?
- Radiance is invariant along straight paths
- $vp(x, \Psi_i)$ = first visible point

•
$$L(x \leftarrow \Psi_i) = L(vp(x, \Psi_i) \rightarrow \Psi_i)$$

How to compute? Recursion ...

Recursion

 Each additional bounce adds one more level of indirect light

Handles ALL light transport

"Stochastic Ray Tracing"

When to end recursion?

From kavita's slides

- Contributions of further light bounces become less significant
 - Max recursion
 - Some threshold for radiance value
- If we just ignore them, estimators will be biased

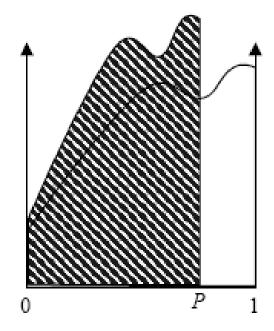
Russian Roulette

Integral

$$I = \int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{f(x)}{P} P dx = \int_{0}^{P} \frac{f(y/P)}{P} dy$$

Estimator

$$\left\langle I_{roulette}\right\rangle = \begin{cases} \frac{f\left(x_{i}\right)}{P} & \text{if } x_{i} \leq P, \\ 0 & \text{if } x_{i} > P. \end{cases}$$



Variance $\sigma_{roulette} > \sigma$

Russian Roulette

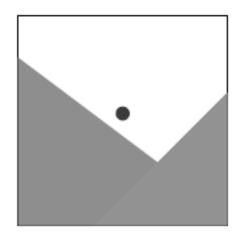
- Pick absorption probability, a = 1-P
 - Recursion is terminated
- 1- a is commonly to be equal to the reflectance of the material of the surface
 - Darker surface absorbs more paths

Algorithm so far

- Shoot primary rays through each pixel
- Shoot indirect rays, sampled over hemisphere
- Terminate recursion using Russian Roulette

Pixel Anti-Aliasing

- Compute radiance only at the center of pixel
 - Produce jaggies
- Simple box filter
 - The averaging method

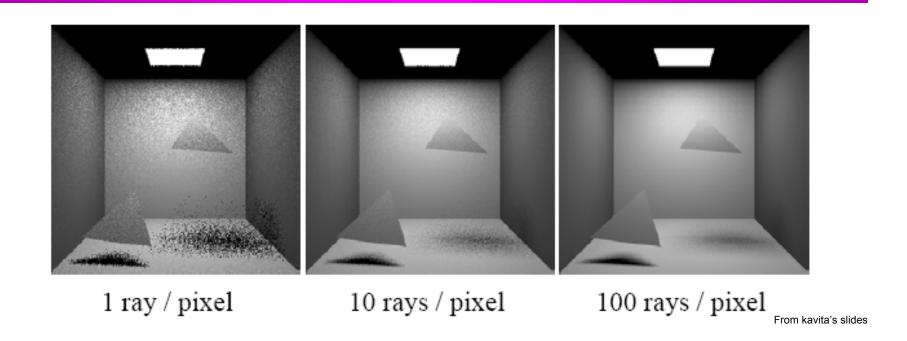


We want to evaluate using MC

Stochastic Ray Tracing

- Parameters
 - Num. of starting ray per pixel
 - Num. of random rays for each surface point (branching factor)
- Path tracing
 - Branching factor = 1

Path Tracing

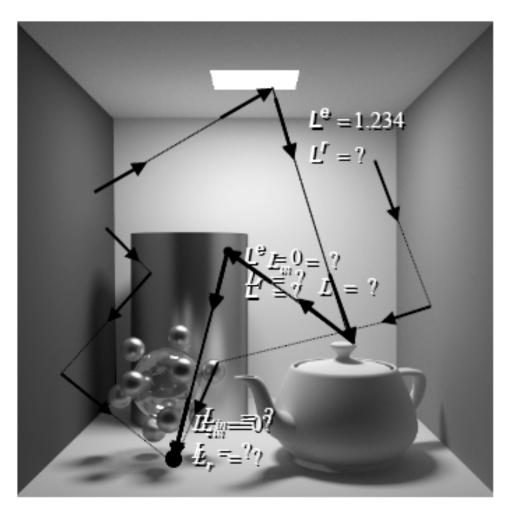


 Pixel sampling + light source sampling folded into one method

Algorithm so far

- Shoot primary rays through each pixel
- Shoot indirect rays, sampled over hemisphere
 - Path tracing shoots only 1 indirect ray
- Terminate recursion using Russian Roulette

Algorithm



KAIST

© Kavita Bala, Computer Science, Cornell University

Performance

- Want better quality with smaller # of samples
 - Fewer samples/better performance
 - Stratified sampling
 - Quasi Monte Carlo: well-distributed samples
- Faster convergence
 - Importance sampling

PA2

Uniform sampling (64 samples per pixel)

Adaptive sampling

Reference

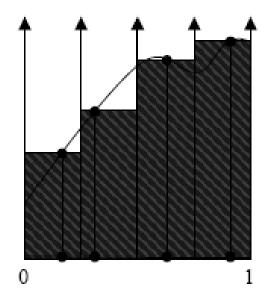
Stratified Sampling

- Samples could be arbitrarily close
- · Split integral in subparts

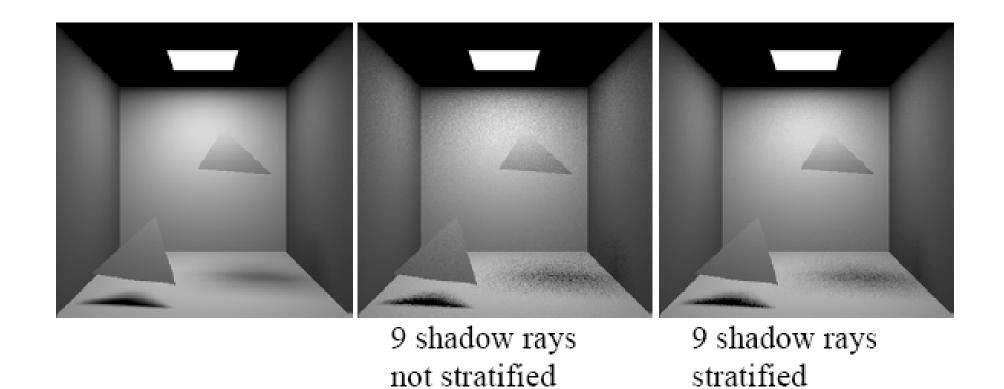
$$I = \int_{X_1} f(x)dx + \ldots + \int_{X_N} f(x)dx$$

Estimator

$$\bar{I}_{strat} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(\bar{x}_i)}{p(\bar{x}_i)}$$

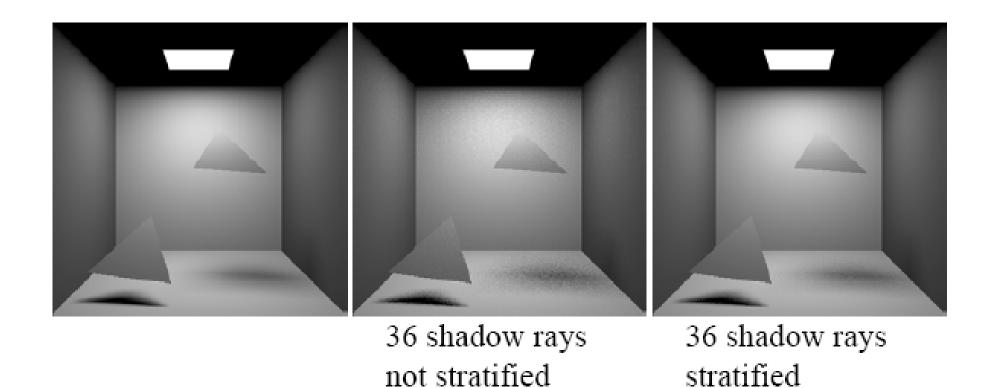


Stratified Sampling



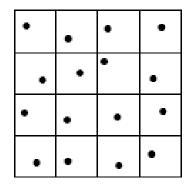
© Kavita Bala, Computer Science, Cornell University

Stratified Sampling



© Kavita Bala, Computer Science, Cornell University

High Dimensions

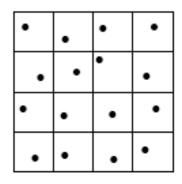


$$\rightarrow N^2$$
 samples

- Problem for higher dimensions
- Sample points can still be arbitrarily close to each other

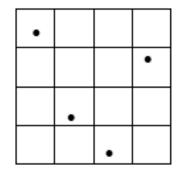
Higher Dimensions

Stratified grid sampling



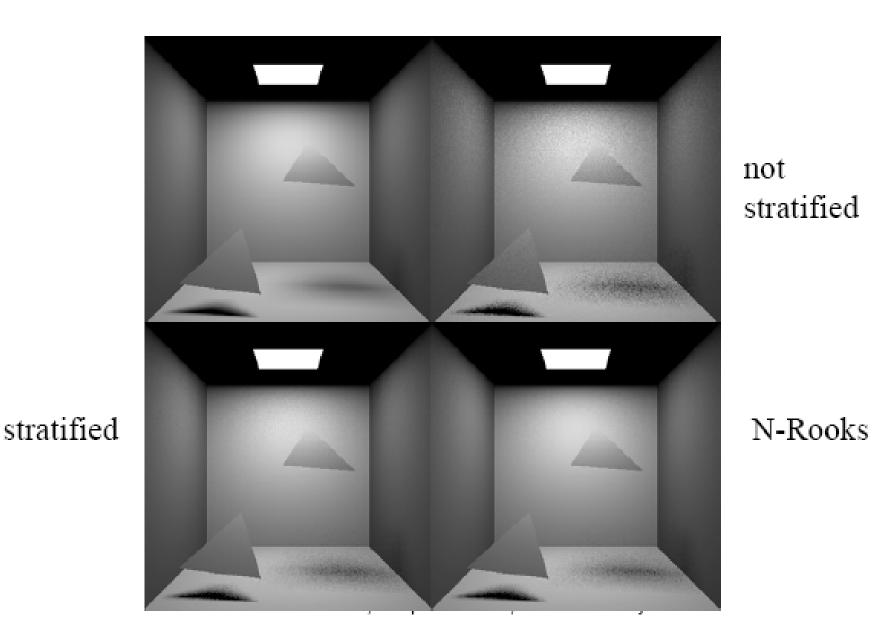
 $\rightarrow N^d$ samples

N-rooks sampling

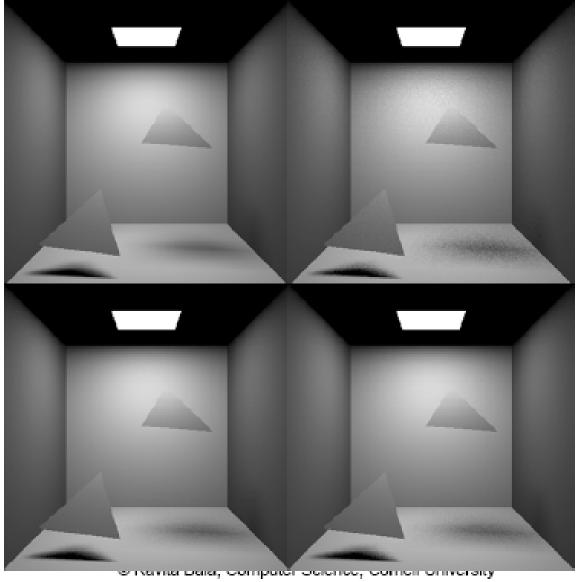


 $\rightarrow N$ samples

N-Rooks Sampling - 9 rays



N-Rooks Sampling - 36 rays



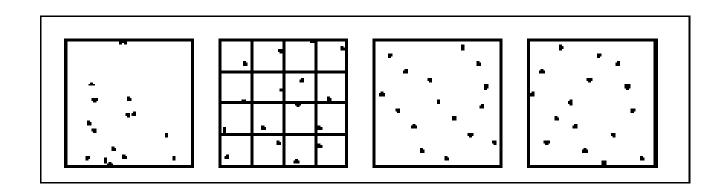
not stratified

stratified

N-Rooks

Quasi Monte Carlo

- Eliminates randomness to find welldistributed samples
- Samples are determinisitic but "appear" random



Quasi-Monte Carlo (QMC)

Notions of variance, expected value don't apply

- Introduce the notion of discrepancy
 - Discrepancy mimics variance
 - E.g., subset of unit interval [0,x]
 - Of N samples, n are in subset
 - Discrepancy: |x-n/N|
 - Mainly: "it looks random"

Example: van der Corput Sequence

- One of simplest low-discrepancy sequences
- Radical inverse function, Φ_b(n)
 - Given $n = \sum_{i=1}^{\infty} d_i b^{i-1}$,
 - $\Phi_b(n) = 0.d_1d_2d_3 \dots d_n$
 - E.g., $\Phi_2(i)$: 111010₂ \rightarrow 0.010111
- van der Corput sequence, $x_i = \Phi_2(i)$

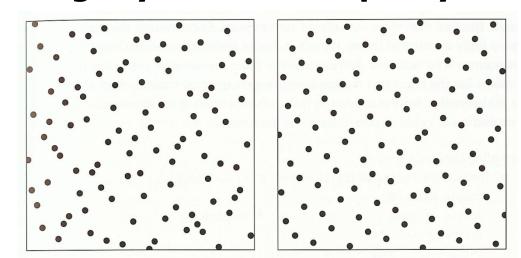
Example: van der Corput Sequence

- One of simplest low-discrepancy sequences
- $x_i = \Phi_2(i)$

i	Base 2	Φ ₂ (i)
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/8
5	101	.101 = 5/8
•		

Halton and Hammersley

- Halton
 - $x_i = (\Phi_2(i), \Phi_3(i), \Phi_5(i), ..., \Phi_{prime}(i))$
- Hammersley
 - $x_i = (1/N, \Phi_2(i), \Phi_3(i), \Phi_5(i), ..., \Phi_{prime}(i))$
 - Assume we know the number of samples, N
 - Has slightly lower discrepancy



Halton

Hammersley

Why Use Quasi Monte Carlo?

- No randomness
- Much better than pure Monte Carlo method
- Converge as fast as stratified sampling

Performance and Error

- Want better quality with smaller number of samples
 - Fewer samples → better performance
 - Stratified sampling
 - Quasi Monte Carlo: well-distributed samples
- Faster convergence
 - Importance sampling: next-event estimation

Class Objectives were:

- Understand a basic structure of Monte Carlo ray tracing
 - Russian roulette for its termination
 - Stratified sampling
- Quasi-Monte Carlo ray tracing

