CS580:

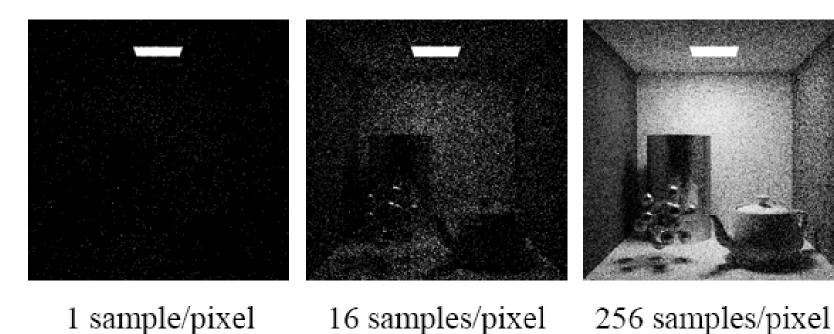
MC Ray Tracing: Part II, Importance Sampling

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/GCG

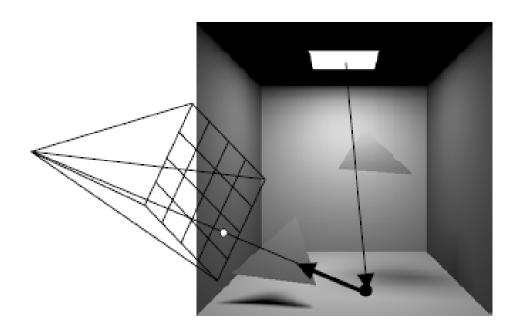
Class Objectives:

- Importance sampling for:
 - Direct terms
 - Lights
 - Indirect terms


Performance and Error

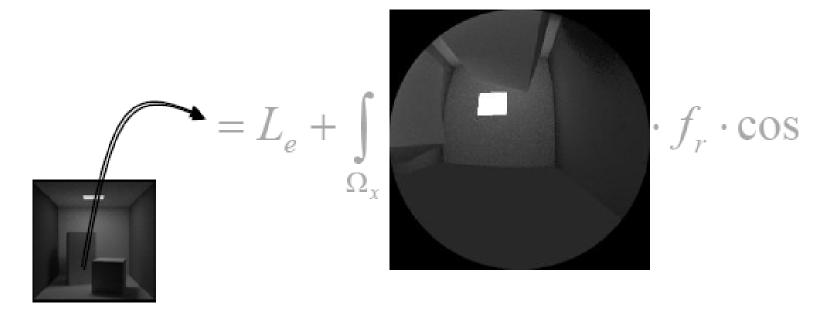
- Want better quality with smaller number of samples
 - Fewer samples → better performance
 - Stratified sampling
 - Quasi Monte Carlo: well-distributed samples
- Faster convergence
 - Importance sampling: next-event estimation

Path Tracing


Sample hemisphere

Importance Sampling: compute direct illumination separately!

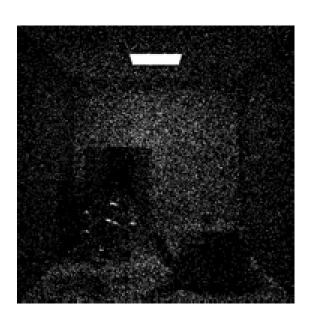
Direct Illumination


 Paths of length 1 only, between receiver and light source

Importance Sampling

$$L(x \to \Theta) = L_{e}(x \to \Theta) + \int_{\Omega_{x}} f_{r}(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_{x}) \cdot d\omega_{\Psi}$$

Radiance from light sources + radiance from other surfaces

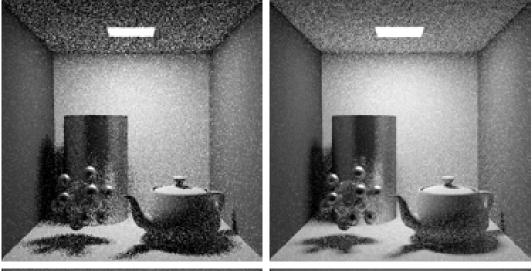

Importance Sampling

$$L(x \rightarrow \Theta) = L_e + L_{direct} + L_{indirect}$$

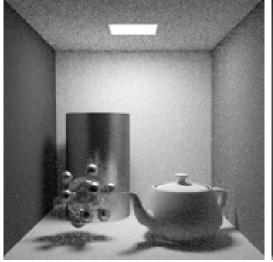
$$=L_e + \int_{\Omega_x} \mathbf{r} \cdot \mathbf{r} \cdot$$

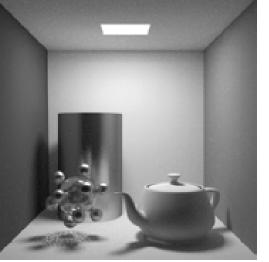
 So ... sample direct and indirect with separate MC integration

Comparison


From kavita's slides

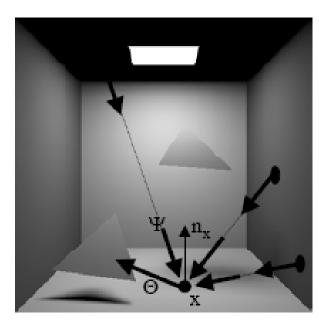
- With and without considering direct illumination
 - 16 samples / pixel


Rays per pixel

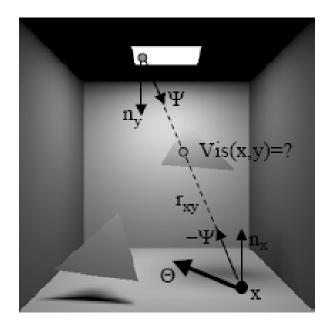

1 sample/ pixel

4 samples/ pixel

16 samples/ pixel


256 samples/ pixel

© Kavita Bala, Computer Science, Cornell University


Direct Illumination

$$L(x \to \Theta) = \int_{A_{source}} f_r(x, -\Psi \leftrightarrow \Theta) \cdot L(y \to \Psi) \cdot G(x, y) \cdot dA_y$$

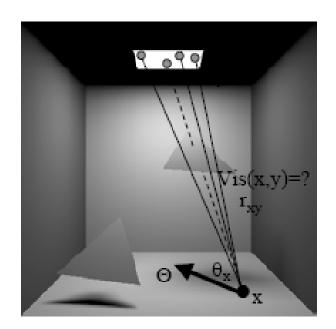
$$G(x, y) = \frac{\cos(n_x, \Theta)\cos(n_y, \Psi)Vis(x, y)}{r_{xy}^2}$$

hemisphere integration

area integration

@ Kavita Bala, Computer Science, Cornell University

Estimator for direct lighting


Pick a point on the light's surface with pdf

For N samples, direct light at point x is:

$$E(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r L_{source}}{r_{x\bar{y}_i}^2} \frac{\cos \theta_x \cos \theta_{\bar{y}_i}}{r_{x\bar{y}_i}^2} Vis(x, \bar{y}_i)}{p(\bar{y}_i)}$$

Generating direct paths

- Pick surface points y_i on light source
- Evaluate direct illumination integral

$$\langle L(x \to \Theta) \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r(...)L(...)G(x, y_i)}{p(y_i)}$$

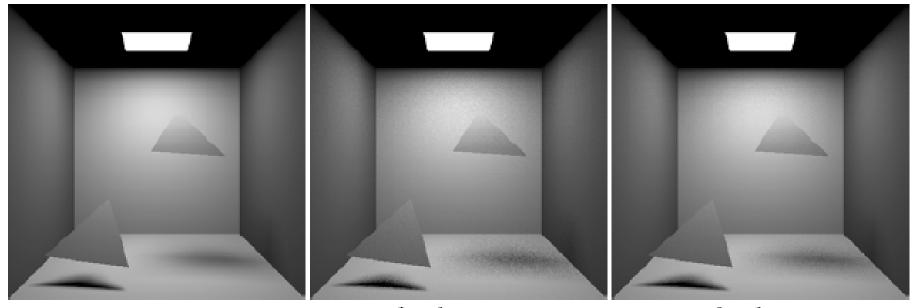
PDF for sampling light

Uniform

$$p(y) = \frac{1}{Area_{source}}$$

- Pick a point uniformly over light's area
 - Can stratify samples

Estimator:


$$E(x) = \frac{Area_{source}}{N} \sum_{i=1}^{N} f_r L_{source} \frac{\cos \theta_x \cos \theta_{\bar{y}_i}}{r_{x\bar{y}_i}^2} Vis(x, \bar{y}_i)$$

More points ...

$$E(x) = \frac{Area_{source}}{N} \sum_{i=1}^{N} f_r L_{source} \frac{\cos \theta_x \cos \theta_{\overline{y}_i}}{r_{x\overline{y}_i}^2} Vis(x, \overline{y}_i)$$

Even more points ...

36 shadow rays

100 shadow rays

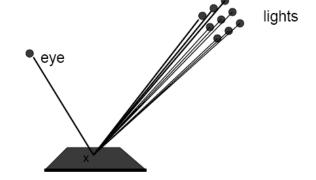
$$E(x) = \frac{Area_{source}}{N} \sum_{i=1}^{N} f_r L_{source} \frac{\cos \theta_x \cos \theta_{\overline{y}_i}}{r_{x\overline{y}_i}^2} Vis(x, \overline{y}_i)$$

Different pdfs

Uniform

$$p(y) = \frac{1}{Area_{source}}$$

- Solid angle sampling
 - Removes cosine and distance from integrand
 - Better when significant foreshortening

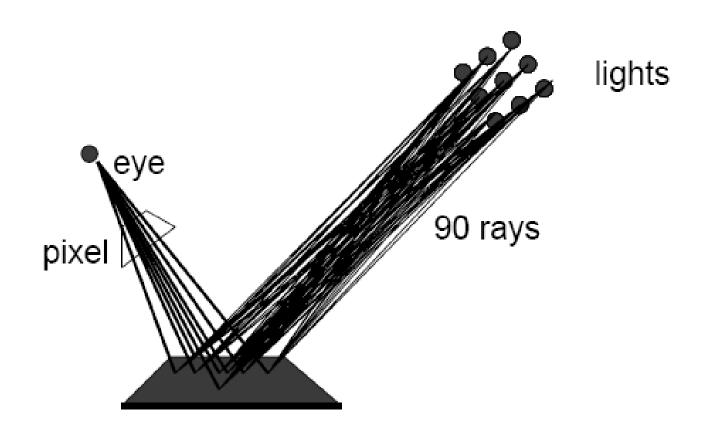

$$E(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r L_{source}}{r_{x\overline{y}_i}^2} \frac{\cos \theta_x \cos \theta_{\overline{y}_i}}{r_{x\overline{y}_i}^2} Vis(x, \overline{y}_i)}{p(\overline{y}_i)}$$

Parameters

- How to distribute paths within light source?
 - Uniform
 - Solid angle
 - What about light distribution?
- How many paths ("shadow-rays")?
 - Total?
 - Per light source? (~intensity, importance, ...)

Scenes with many lights

Many lights in scenes: M lights



- Formulation 1: M integrals, one per light
 - Same solution technique as earlier for each light

$$L(x \to \Theta) = \sum_{i=1}^{M} \int_{A_{source}} f_r(x, -\Psi \leftrightarrow \Theta) \cdot L_{source}(y \to -\Psi) \cdot G(x, y) \cdot dA_y$$

Antialiasing: pixel

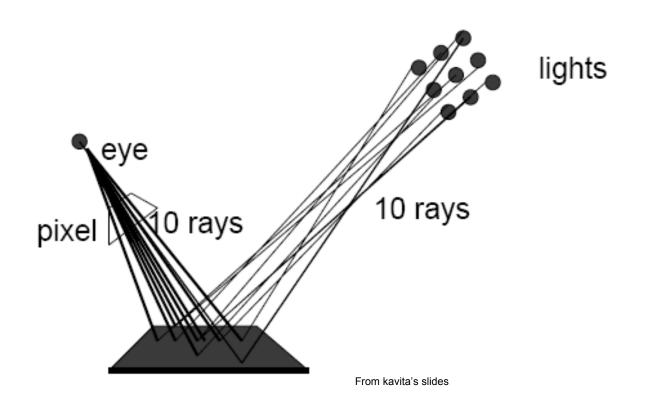
Anti-aliasing

Formulation over all lights

- When M is large, each direct lighting sample is very expensive
- We would like to importance sample the lights
- Instead of M integrals

$$L(x \to \Theta) = \sum_{i=1}^{m} \int_{A_{source}} f_r(x, -\Psi \longleftrightarrow \Theta) \cdot L_{source}(y \to -\Psi) \cdot G(x, y) \cdot dA_y$$

Formulation over 1 integration domain


$$L(x \to \Theta) = \int_{A_{all \ lights}} f_r(x, -\Psi \longleftrightarrow \Theta) \cdot L_{source}(y \to -\Psi) \cdot G(x, y) \cdot dA_y$$

Why?

- Do not need a minimum of M rays/sample
- Can use only one ray/sample

- Still need N samples, but 1 ray/sample
- Ray is distributed over the whole integration domain
 - Can importance sample the lights

Anti-aliasing

How to sample the lights?

- A discrete pdf p_i (k_i) picks the light k_i
- A surface point is then picked with pdf $p(y_i|k_i)$

• Estimator with N samples:
$$E(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r L_{source} G(x, \overline{y}_i)}{p_L(k_i) p(y_i \mid k_i)}$$

Strategies for picking light

- Uniform
$$p_L(k) = \frac{1}{M}$$

- Area
$$p_L(k) = \frac{A_k}{\sum A_k}$$

- Power
$$p_L(k) = \frac{P_k}{\sum P_k}$$

Do not take visibility into account!

Research on Many Lights

- Ward 91
 - Sort lights based on their maximum contribution
 - Pick bright lights based on a threshold
 - Do not consider visibility
- Many other papers
- One of recent works:
 - LightCuts: A Scalable Approach to Illumination, SIG. 05, Walter et al.

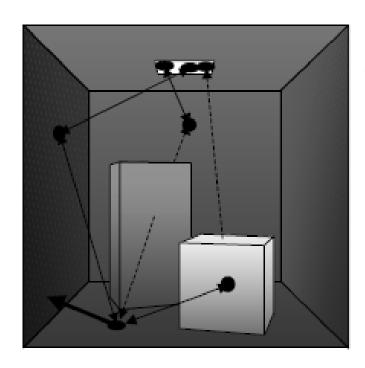
Direct paths

- Different path generators produce different estimators and different error characteristics
- Direct illumination general algorithm:

Stochastic Ray Tracing

- Sample area of light source for direct term
- Sample hemisphere with random rays for indirect term

- Optimizations:
 - Stratified sampling
 - Importance sampling
 - Combine multiple probability density functions into a single PDF


Indirect Illumination

- Paths of length > 1
- Many different path generators possible
- Efficiency depends on:
 - BRDFs along the path
 - Visibility function

— ...

Indirect paths - surface sampling

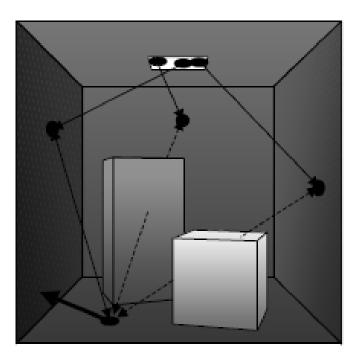
- Simple generator (path length = 2):
 - select point on light source
 - select random point on surfaces

- per path:
 - 2 visibility checks

Indirect paths - surface sampling

Indirect illumination (path length 2):

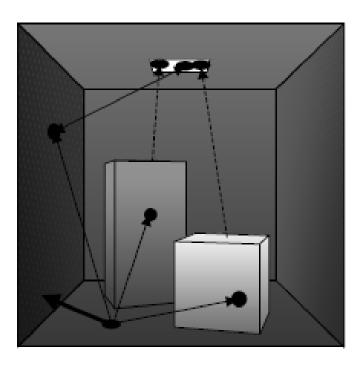
$$y \rightarrow z \rightarrow x$$


$$L(x \to \Theta) = \int\limits_{A_{source}} \int\limits_{A} L(y \to \Psi_1) f_r(z, -\Psi_1 \leftrightarrow \Psi_2) G(z, y) f_r(x, -\Psi_2 \leftrightarrow \Theta) G(z, x) dA_z dA_y$$

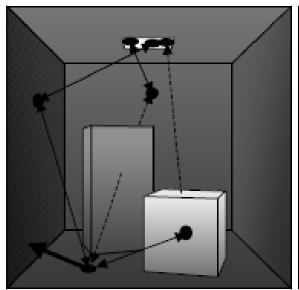
$$\left\langle L(x \to \Theta) \right\rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{L(y_i \to \Psi_{1i}) f_r(z_i, -\Psi_{1i} \leftrightarrow \Psi_{2i}) G(z_i, y_i) f_r(x, -\Psi_{2i} \leftrightarrow \Theta) G(z_i, x)}{p_y(y_i) p_z(z_i)}$$

- 2 visibility values cause noise
 - which might be 0

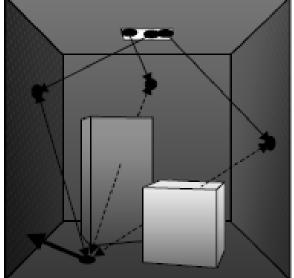
Indirect paths - source shooting


- Shoot ray from light source, find hit location
- Connect hit point to receiver

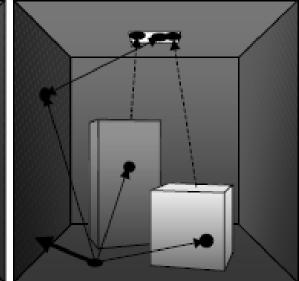
- per path:
 - 1 ray intersection
 - 1 visibility check


Indirect paths - receiver gathering

- Shoot ray from receiver point, find hit location
- Connect hit point to random point on light source


- per path:
 - 1 ray intersection
 - 1 visibility check

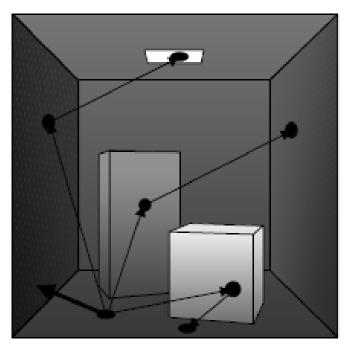
Indirect paths


Surface sampling

- 2 visibility terms; can be 0

Source shooting

- 1 visibility term
- 1 ray intersection



Receiver gathering

- 1 visibility term
 - 1 ray intersection

More variants ...

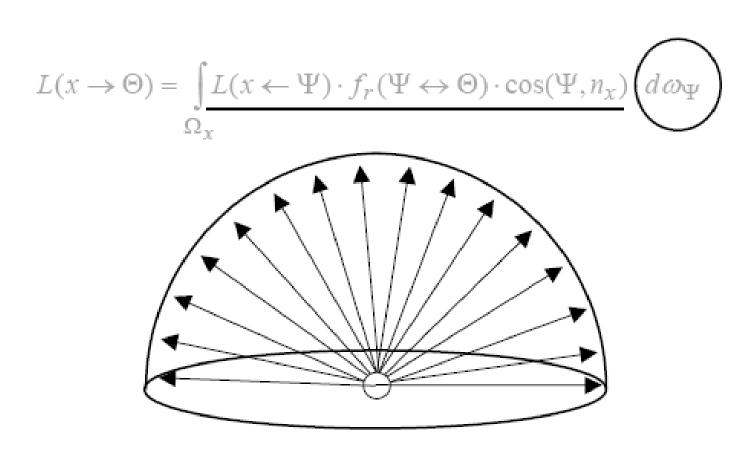
- Shoot ray from receiver point, find hit location
- Shoot ray from hit point, check if on light source

- per path:
 - 2 ray intersections
 - L_e might be zero

Indirect paths

- Same principles apply to paths of length > 2
 - generate multiple surface points
 - generate multiple bounces from light sources and connect to receiver
 - generate multiple bounces from receiver and connect to light sources

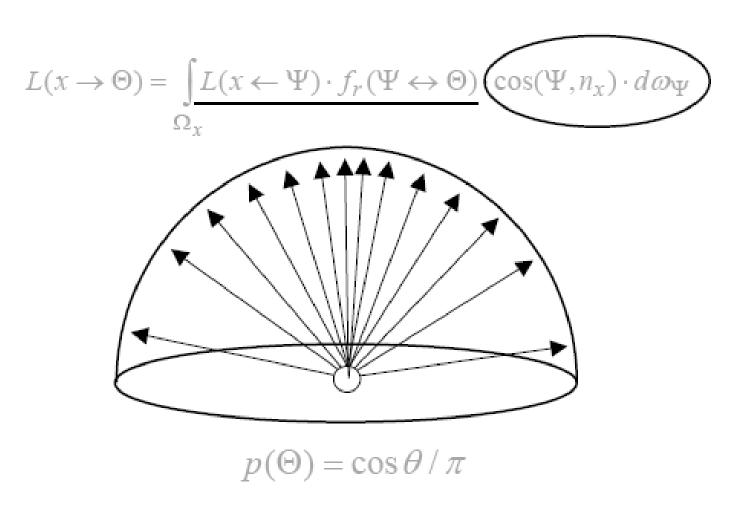
— . . .


 Estimator and noise characteristics change with path generator

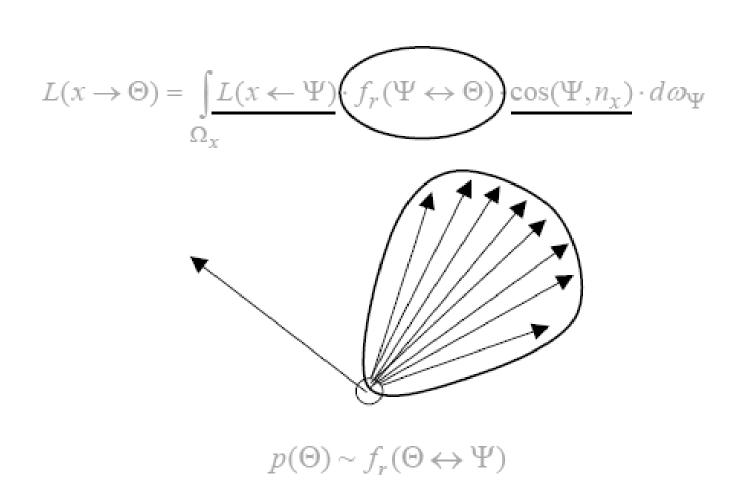
Stochastic Ray Tracing

- Sample area of light source for direct term
- Sample hemisphere with random rays for indirect term

- Optimizations:
 - Stratified sampling
 - Importance sampling
 - Combine multiple probability density functions into a single PDF

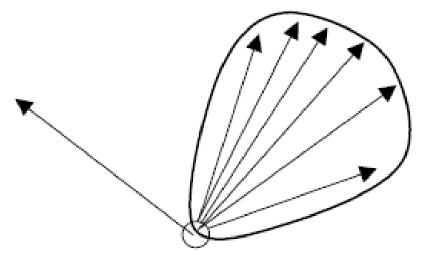

Uniform sampling over the hemisphere

$$p(\Theta) = 1/(2\pi)$$

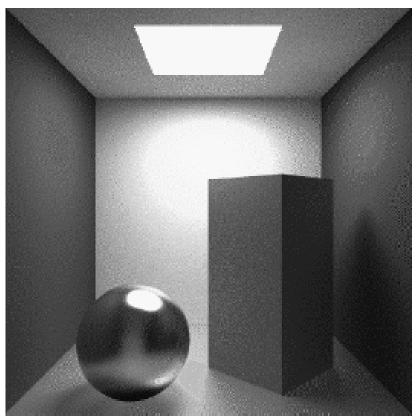

© Kavita Bala, Computer Science, Cornell University

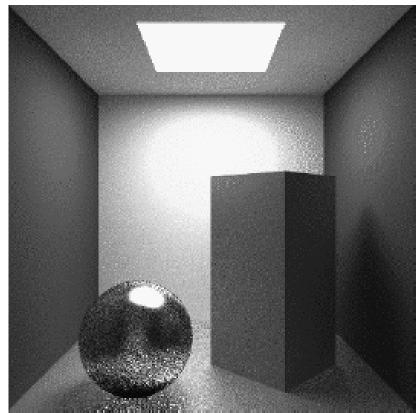
Sampling according to the cosine factor

Kavita Bala, Computer Science, Cornell University


Sampling according to the BRDF

© Kavita Bala, Computer Science, Cornell University


 Sampling according to the BRDF times the cosine


$$L(x \to \Theta) = \int_{\Omega_x} \underline{L(x \leftarrow \Psi)} \underbrace{f_r(\Psi \leftrightarrow \Theta) \cdot \cos(\Psi, n_x) \cdot d\omega_{\Psi}}$$

$$p(\Theta) \sim f_r(\Theta \leftrightarrow \Psi) \cos \theta$$

Comparison

With importance sampling (brdf on sphere)

Without importance sampling

General GI Algorithm

- Design path generators
- Path generators determine efficiency of GI algorithm
- Black boxes
 - Evaluate BRDF, ray intersection, visibility evaluations, etc

Class Objectives were:

- Importance sampling for:
 - Direct terms
 - Lights
 - Indirect terms

Homework

- Go over the next lecture slides before the class
- Watch 2 SIGGRAPH videos and submit your summaries every Tue. class
 - Just one paragraph for each summary

Example:

Title: XXX XXXX XXXX

Abstract: this video is about accelerating the performance of ray tracing. To achieve its goal, they design a new technique for reordering rays, since by doing so, they can improve the ray coherence and thus improve the overall performance.

Any Questions?

- Come up with one question on what we have discussed in the class and submit at the end of the class
 - 1 for already answered questions
 - 2 for typical questions
 - 3 for questions with thoughts
- Submit questions at least four times before the mid-term exam
 - Multiple questions for the class is counted as only a single time

Next Time

Biased techniques

