Light Field Reconstruction

20154471 InJae Yu

CS580 Paper Presentation 2016. 06. 09

First Paper

- Layered Light Field Reconstruction for Defocus Blur
 - Siggraph 15
 - Sheared reconstruction filter of **Defocus Blur**
 - Screen-Independent filter
 - Reconstruction by compositing depth layers

Light Field and Irradiance

- Light Field : $(x_i, y_i, u_i, v_i) \longmapsto (z_i, l_i)$
 - (Pixel, Lens)->(Depth, Radiance)
- Partition the light field to have similar depth z
- $e_i(x)$: Irradiance at pixel x from layer i
 - integra $e(x) = \int l(x, u) du$ over the lens in certain layer

Aperture of camera

Radiance-Depth Relation

• With certain depth, radiance can be converted to function of x

$$x_0 = x_1 + \boxed{\frac{z - F}{zF}} u_1 = x_1 + c(z)u_1$$
$$l(x, u) = l(x + c(z)u, 0) = l^0(x + c(z)u)$$

Frequency Response of Radiance

Fourier Analysis of radiance[Egan et al 2011]

$$l(x,u) = l^{0}(x + c(z)u) \longrightarrow L(\Omega_{x}, \Omega_{u}) = L^{0}(\Omega_{x})\delta(\Omega_{u} - c(z)\Omega_{x})$$

Frequency response is sheared along the line

$$\Omega_u - c(z)\Omega_x = 0$$

- Calculate max and min value of c(z) in each layer
- Bound the frequency with sheared filter

Filter Design

- Axis Aligned Filter & Sheared Filter
 - Axis Aligned : Easy to compute, require many samples
 - Sheared Filter: Hard to compute, require small samples

Screen-Independent Filter

• Previous Sheared Filter [Egan et al 2011]

$$w_{
m shear}(x,u) = w(x;\sigma_x) w(u+rac{x}{c_{
m avg}};\sigma_u)$$
 Per-pixel Defined Filter

• Convert the aperture filter to be **independent from** x

Independent

$$w_{\text{shear}}(x, u) = w(x; \sigma_x) w(u + \frac{x}{c_{\text{avg}}}; \sigma_u)$$

$$= \underbrace{w(x + \eta u; \sigma'_x)}_{w_x} \underbrace{w(u; \sigma'_u)}_{w_u}$$
Pixel

Computational Efficiency

• Irradiance of light field at one depth layer

$$e(x) \approx \iint l(x', u) w_{\text{shear}}(x' - x, u) du dx'$$

$$= \iint l(x', u) w_{x}((x' - x) + \eta u) w_{u}(u) du dx'$$

$$[\text{Let } q = x' + \eta u, dq = dx']$$

$$= \iint \underbrace{\left[\int w_{u}(u) l(q - \eta u, u) du\right]}_{I_{l}(q)} w_{x}(q - x) dq$$

$$= \iint l(q) w_{x}(x - q) dq = (I_{l} * w_{x})(x),$$

Perform only once for each layer

- 1. Multiply radiance sample $l(x_i, u_i)$ with $w_u(u_i)$
- 2. Accumulate $l(x_i, u_i)w_u(u_i)$ at the pixel $q \rightarrow I_l$
- 3. Convolution $(I_l * w_x)(x)$, I_l is reused for each pixel

Depth Layer Composition

- Different layers may occlude each other
 - Weighted(Opacity $\overline{a_i(x)}$) sum of irradiance from each layer

Layer Opacity

- $\overline{a_i(x)}$: Visibility of x at Layer i
 - Integration of visibility $a_i(x,u)$ over lens

$$\bar{\alpha}_j(x) = \int \alpha_j(x, u) a(u) du$$

Same as irradiance calculation

$$e(x) = \int l(x, u)a(u) du$$

• Calculate irradiance and visibility at once, using same sheared filter

Result

- Compared methods
 - TLFR, Lehtinen et al.'s [2011]
 - Temporal light field reconstruction for rendering distribution effects
 - OurAA, Mehta et al.'s [2012]
 - Axis-Aligned Filtering for Interactive Sampled Soft Shadows
 - Filtering after generating 8 samples per pixel

	TLFR		OUR			
Scene	CPU	GPU A	CPU	GPU A	GPU B	Avg. Layers
DRAGON	73920	12721	7472	31.1	131.2	3.5
CITADEL	74963	14023	9130	39.5	150.8	4.8
SAN MIGUEL	113907	22333	14072	75.9	269.9	9.5

Conclusion

- Screen-Independent Sheared Filter
 - Computation enhancement
- Depth Layer Composition
 - Calculate with irradiance simultaneously

Second Paper

- Light Field Reconstruction Using Sparsity in the Continuous Fourier Domain
 - Siggraph 15
 - Light Field reconstruction for viewpoint images
 - Construct sparse continuous Fourier transform of light field

Goal

Reduced Alumbert of americas

Continuous and Discrete Fourier Transform

[Slides from Author]

Problem of DFT

 Sparsity of light field spectrum in discrete domain is much less sparse than continuous domain

Traditional Sparse Recovery

Sparse Recovery

Sparse Continuous Fourier Spectrum

• CFT of k peaks $x(t) = \frac{1}{N}$

$$x(t) = \frac{1}{N} \sum_{i=0}^{k} a_i \exp\left(\frac{2\pi j t \omega_i}{N}\right)$$

Frequency of k peaks

But how do we know

- 1. # of peaks
- 2. Coefficient of frequency
- 3. Frequency

Overall Process

Initialization – Find the # of peaks

Compute the DFT of row, column and diagonal samples(O(n))

Initialization – Find the # of peaks

Vote to recover the discrete position of the large frequencies

Sparse CFT Recovery

- Recovering Frequency Coefficient
 - Use ω_i derived from **Initialization Step**
 - Solve simple linear system

$$x(t) = \frac{1}{N} \sum_{i=0}^{k} a_i \exp\left(\frac{2\pi j t \omega_i}{N}\right)$$

Sparse CFT Recovery

- Recovering Frequency
 - Use Gradient Decent Algorithm

$$e = \sum_{t} \left\| x(t) - \frac{1}{N} \sum_{i=0}^{k} \tilde{a}_{i} \exp\left(\frac{2\pi j t \tilde{\omega}_{i}}{N}\right) \right\|^{2}$$

• Adjust ω_i slightly until e converges

Reconstruct Full Signal

• Reconstruct an image of unknown viewpoint u,v using CFT

$$L_{\omega_x,\omega_y}(u,v) = \sum_{(a,\omega_u,\omega_v)\in F} a \cdot \frac{1}{N} \exp\left(2j\pi \frac{u\omega_u + v\omega_v}{N}\right)$$

Original Captured Image

Our Reconstruction

[Slides from Author]

Viewpoint Denoising

Conclusion

- Sparsity in continuous vs discrete Fourier domain
- Reconstruction algorithm
 - Reduces capture cost by 70-90%
 - Non-Lambertian scenes
 - Viewpoint denoising

Thank You!