Real-time Rendering

Mechanical engineering, Ungsig Nam
CS580 Student Presentation
1 0th May, 2016

Brief review of previous talk

- Noise Filtering in Monte Calro Rendering
 - Random Parameter Filtering(RPF)
 - Non-local means Filtering(NLM)
- Compare the characteristics of RPF and NLM

Presentation papers

- Peiran Ren et al. Global Illumination with Radiance Regression Functions, SIGGRAPH 2013
- Lei Yang et al. Image-Based Bidirectional Scene Reprojection, SIGGRAPH Asia 2011

1. Global Illumination with Radiance Regression Functions

Motivation

- Precomputed radiance transfer (PRT) is successful approach for indirect illumination, BUT in real-time rendering
 - cannot deal with dynamic local light sources
 - cannot deal with high frequency glossy interreflections.
- → Solve these problem with radiance regression functions(RRF)

Key idea

Regression Function with augmented attributes

Neural network structure & Training

• Input space partitioning & RRF combination

$$s(\mathbf{x}_{p}, \mathbf{v}, \mathbf{l}) = \int_{\Omega^{+}} \rho(\mathbf{x}_{p}, \mathbf{v}, \mathbf{v}_{i}) (\mathbf{n} \cdot \mathbf{v}_{i}) s_{i}(\mathbf{x}_{p}, \mathbf{v}_{i}) d\mathbf{v}_{i}$$

$$= \underline{s^{0}(\mathbf{x}_{p}, \mathbf{v}, \mathbf{l}) + \underline{s^{+}(\mathbf{x}_{p}, \mathbf{v}, \mathbf{l})}}_{\text{direct}},$$
direct indirect

x_p: surface point

v: viewing direction

I: position of the point light

ρ: BRDF

n: surface normal

$$\rho(\mathbf{x}_p, \mathbf{v}, \mathbf{v}_i) = \rho_c(\mathbf{v}, \mathbf{v}_i, \mathbf{a}(\mathbf{x}_p))$$

 ρ_c : closed-form of ρ

a(x_p): a set of reflectance parameters

x_p: surface point

v: viewing direction

!: position of the point light

p: BRDF

n: surface normal

$$s^{+}(\mathbf{x}_{p}, \mathbf{v}, \mathbf{l}) = \int_{\Omega^{+}} \rho_{c}(\mathbf{v}, \mathbf{v}_{i}, \mathbf{a}(\mathbf{x}_{p})) (\mathbf{n}(\mathbf{x}_{p}) \cdot \mathbf{v}_{i}) s_{i}^{+}(\mathbf{x}_{p}, \mathbf{v}_{i}) d\mathbf{v}_{i}$$

$$\rightarrow s^{+}(\mathbf{x}_{p}, \mathbf{v}, \mathbf{l}) = s_{a}^{+}(\mathbf{x}_{p}, \mathbf{v}, \mathbf{l}, \mathbf{n}(\mathbf{x}_{p}), \mathbf{a}(\mathbf{x}_{p}))$$

$$s_{a}^{+}(\mathbf{x}_{p}, \mathbf{v}, \mathbf{l}, \mathbf{n}(\mathbf{x}_{p}), \mathbf{a}(\mathbf{x}_{p})) \approx \Phi(\mathbf{x}_{p}^{i}, \mathbf{v}^{i}, \mathbf{l}^{i}, \mathbf{n}^{i}, \mathbf{a}^{i})$$

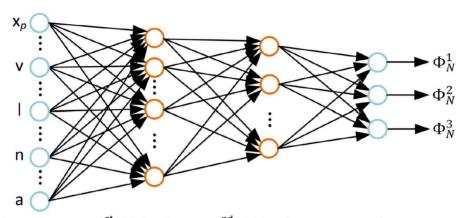
New function s_a^+ with an expanded set of attributes \rightarrow n and a do not need to be inferred from training data in regression function Φ

$$\mathbf{x}^i = [\mathbf{x}_p^i, \mathbf{v}^i, \mathbf{l}^i, \mathbf{n}^i, \mathbf{a}^i]^T, \ \mathbf{y}^i = s^+(\mathbf{x}_p^i, \mathbf{v}^i, \mathbf{l}^i)$$

$$E = \sum_{i} ||\mathbf{y}^{i} - \Phi(\mathbf{x}_{p}^{i}, \mathbf{v}^{i}, \mathbf{l}^{i}, \mathbf{n}^{i}, \mathbf{a}^{i})||^{2}$$

RRF Φ is determined by minimizing error, E

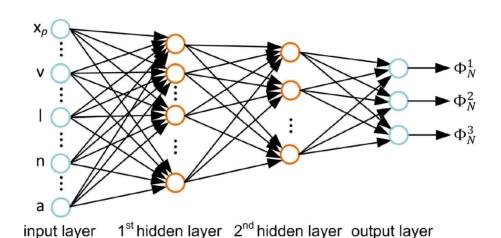
$$E(\mathbf{w}) = \sum_{i} ||\mathbf{y}^{i} - \Phi_{N}(\mathbf{x}_{p}^{i}, \mathbf{v}^{i}, \mathbf{l}^{i}, \mathbf{n}^{i}, \mathbf{a}^{i}, \mathbf{w})||^{2}$$



$$n_j^i = \sigma(z_j^i), \ z_j^i = w_{j0}^i + \sum_{k>0} w_{jk}^i n_k^{i-1}$$

$$n^i_j$$
 : node j in i-th layer w^i_{j0} : bias weight

 w^{i}_{ik} : weight of the directed edge from node k to node j

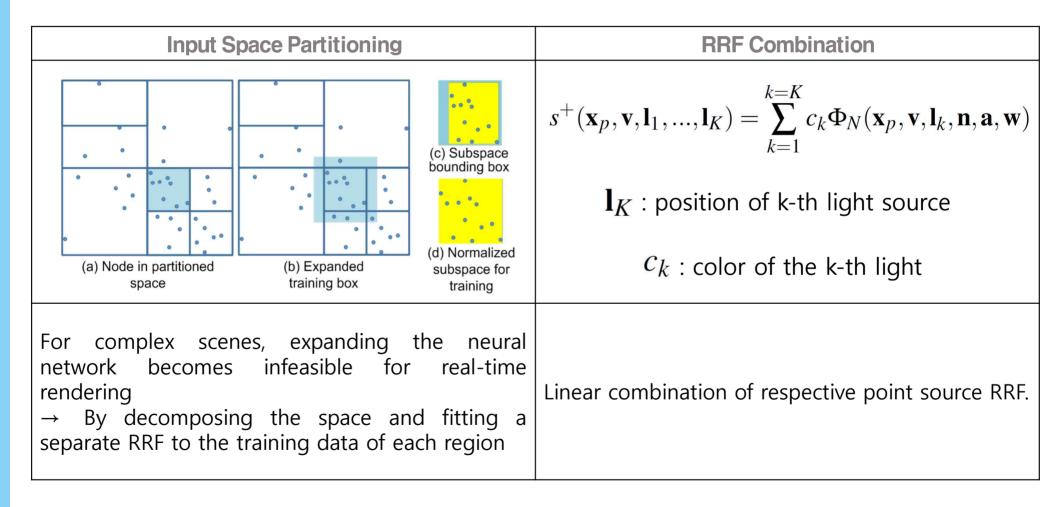


$$\sigma(z) = \tanh(z) = 2/(1 + e^{-2z}) - 1$$

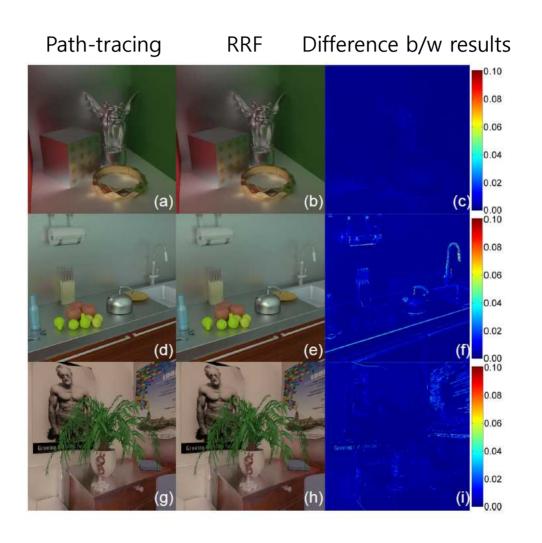
$$\Phi_N = [\Phi_N^1, \Phi_N^2, \Phi_N^3] \quad \mathbf{x} = [\mathbf{x}_p, \mathbf{v}, \mathbf{l}, \mathbf{n}, \mathbf{a}]$$

$$\Phi_N^i(\mathbf{x}, \mathbf{w}) = w_{i0}^3 + \sum_{j>0} w_{ij}^3 \sigma(w_{j0}^2 + \sum_{k>0} w_{jk}^2 \sigma(w_{k0}^1 + \sum_{l=1}^9 w_{kl}^1 x_l))$$

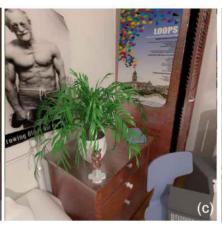
Handling scene complexity

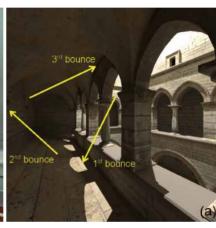


Results



Results





Scene	RRF Size	FPS	Dir. Shading	Tree Trav.	RRF Eval.
CornellBox	5.64MB	61.9fps	5.33ms	2.39ms	8.43ms
Plant	66.77MB	32.6fps	5.10ms	2.52ms	23.05ms
Kitchen	33.12MB	36.5fps	15.341ms	2.37ms	9.62ms
Sponza	24.81MB	60.8fps	6.75ms	2.16ms	7.54ms
Bedroom	109.09MB	69.1fps	2.61ms	2.44ms	9.40ms

Results

Limitation of RRF

- Long time for preprocessing
- Dimensionality of the input vector should not be too high
- It provides a good approximation only of the indirect illumination near sampled viewing directions and light positions.

2. Image-Based Bidirectional Scene Reprojection

Motivation

- Existing upsampling strategies only reuse information from previous frames
- smooth shading interpolation
- Higher, more stable framerate

Key Idea

- Temporal direction: Bidirectional
 - upsamples rendered content by reusing data from both temporal directions(forward and backward)
- Data access: Gather
 - Simply involves texture lookups(index) into a previously rendered image
- Correspondence domain: Source
 - Performs reprojection using only image buffers without rasterization

 F_t : the framebuffer of the I-frame rendered at time t

I-frames: Rendered frames

B-frames: interpolated frames (bidirectionally predicted)

Between successive I-frames F_t , F_{t+1} , there are n-1 $\alpha \in \left\{\frac{1}{n}, \dots, \frac{n-1}{n}\right\}$

 $\pi_{t o t}$: the transformation that maps the surface point \bar{p}_t at time t into the clip space of time t'

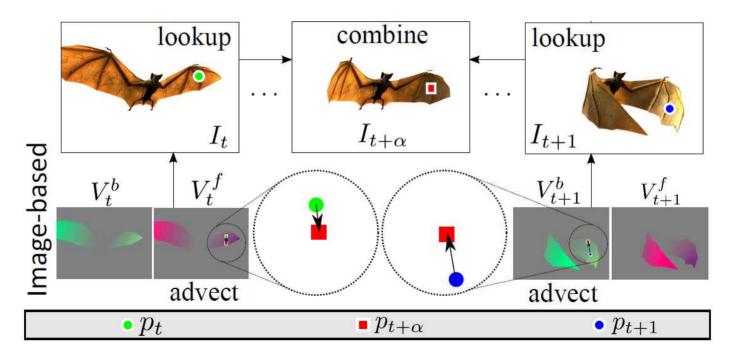
 $p=(p_x,p_y)$: 2D coordinates of a pixel in clip space

 $\bar{p}=(p_x,p_y,Z[p])$: 3D coordinates of geometry rasterization, Z: depth buffer

- To render the full 3D scene at I-frames using conventional methods and then insert interpolated B-frames between these to achieve a higher framerate.
- Its algorithm reconstructs B-frames at uniformly spaced time locations in the interval between t and t+1.
- The idea is to augment the I-frame buffers with information about the 3D scene flow between adjacent I-frames.

 $V_t^f[p] = \pi_{t \to t+1}(\bar{p}_t) - \bar{p}_t$: forward flow field (encodes the motion of the scene at each pixel between I-frames [t,t+1])

$$V_{t+1}^b[p] = \pi_{t+1 o t}(\bar{p}_{t+1}) - \bar{p}_{t+1}$$
: backward flow field(between I-frames [t+1,t])



- Assumptions:
 - 1. The motion between t and t+1 is linear
 - 2. The motion flow field is continuous and smooth
- Given $p_{t+\alpha}$, find p_t in field V_t^f such that $p_t + \alpha V_t^f[p_t] = p_{t+\alpha}$
 - Same for p_{t+1} (in reverse)
- An inverse-mapping problem

Motion flow

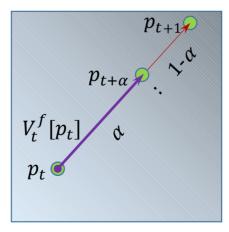
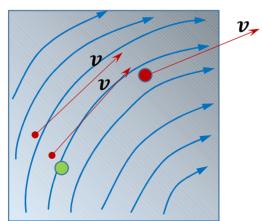


Image-space

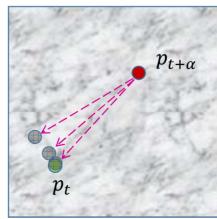
$$p_{t,0}=p_{t+lpha}$$
 $p_{t,i}=p_{t+lpha}-d_i^f$, where $d_i^f=lpha V_t^f[p_{t,i-1}]$. xy

- Iterative search
 - 1. Initialize vector \boldsymbol{v} with the motion flow $\alpha V_t^f[p_{t+\alpha}]$
 - 2. Attempt to find p_t using v
 - 3. Update $oldsymbol{v}$ with the motion flow at current p_t estimate
 - 4. Repeat 2-3

Motion flow



Iterative reprojection



Iterative search - forward direction

$$z^f = Z_t \big[p_{t,m} \big] + \alpha V_t^f \big[p_{t,m} \big]. z \qquad \qquad \text{Clip-space depth}$$

$$e^f = \left\| \underbrace{p_{t,m} + \alpha V_t^f \big[p_{t,m} \big]. xy}_{\text{final estimated point}} - \underbrace{p_{t+\alpha}}_{\text{initial estimated point}} \right\| \qquad \text{Screen-space error}$$

Iterative search - backward direction

$$p_{t+1,0} = p_{t+\alpha}$$

$$p_{t+1,i} = p_{t+\alpha} - d_i^b \qquad d_i^b = (1-\alpha)V_{t+1}^b [p_{t+1,i-1}].xy$$

$$z^{b} = Z_{t}[p_{t+1,m}] + (1-\alpha)V_{t+1}^{b}[p_{t+1,m}].z$$
 Clip-space depth
$$e^{b} = \|p_{t+1,m} + (1-\alpha)V_{t+1}^{b}[p_{t+1,m}].xy - p_{t+\alpha}\|$$
 Screen-space error

Visibility and shading

Case 1: e^f , $e^b < \epsilon_1$ (tolerance error) and similar depths, or $\left|z^f-z^b\right|<\epsilon_2$ Blended color is

$$e^{f} < e^{b} \rightarrow (1 - \alpha)I_{t}[p_{t,m}] + \alpha I_{t+1}[p_{t,m} + V_{t}^{f}[p_{t,m}].xy]$$

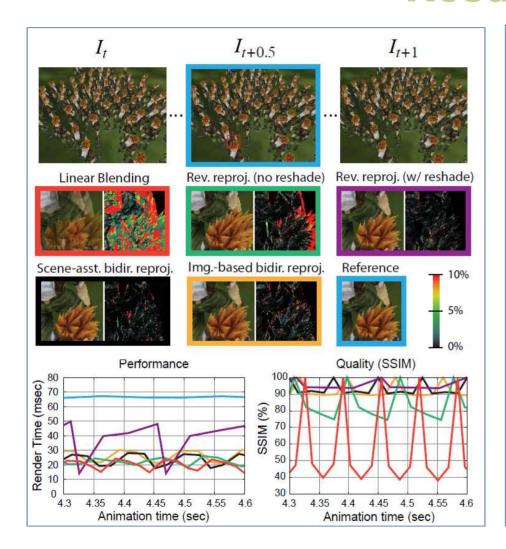
 $e^{b} \ge e^{f} \rightarrow (1 - \alpha)I_{t}[p_{t+1,m} + V_{t+1}^{b}[p_{t+1,m}].xy] + \alpha I_{t+1}[p_{t+1,m}]$

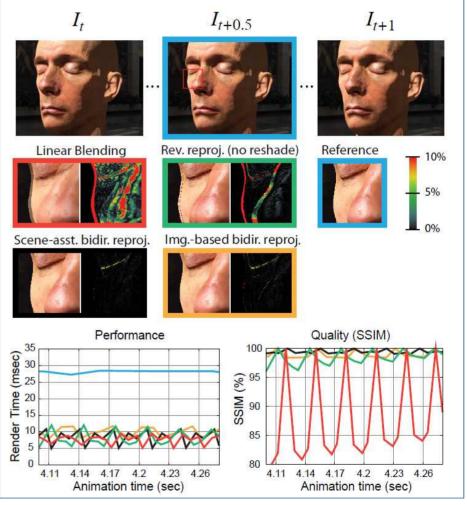
Case 2: e^f , $e^b < \epsilon_1$ (tolerance error) and different depths Select the color closest to the camera

Additional Search Initializations

	Dual initialization	Latest-frame initialization	
Forward search	$p'_{t,0} = p_{t+\alpha} + \alpha V_{t+1}^b[p_{t+\alpha}]$	$p'_{t,0} = p_{t+\alpha} - d_0^f$ $d_0^f = \frac{\alpha}{\alpha'} d_i^f$	
Backward search	$p'_{t+1,0} = p_{t+\alpha} + (1-\alpha)V_t^f[p_{t+\alpha}]$	$p'_{t+1,0} = p_{t+\alpha} - d_0^b$ $d_0^b = \frac{1 - \alpha}{1 - \alpha'} d_i^b$	

Result





Result

Result

Limitation of Image-Based Bidirectional Scene Reprojection

- Cannot express dynamic shading effects well (highlights, transparency etc.)
- Prone to make errors in the interpolated B-frames wherever the local search fails

THANK YOU

Do you have question or comment?

Quiz

- Q1. In first paper, what is the number of attributes in RRF represented by neural network
 - + the number of hidden layer?
 - a. 7

- b. 8
- c. 9
- d. 10

- Q2. In second paper, which is **correct** according to **temporal direction**?
 - a. Bidirection
- b. One-directional c. Random directional
- d. All-directional