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* Noise Filtering in Monte Calro Rendering

- Random Parameter Filtering(RPF)
- Non-local means Filtering(NLM)

« Compare the characteristics of RPF and NLM



e Peiran Ren et al. Global Illumination with Radiance
Regression Functions, SIGGRAPH 2013

 Lel Yang et al. Image-Based Bidirectional Scene
Reprojection, SIGGRAPH Asia 2011



1. Global l[Hlumination
with Radiance Regression Functions




« Precomputed radiance transfer (PRT) is successful
approach for indirect illumination, BUT in real-time
rendering

- cannot deal with dynamic local light sources
- cannot deal with high frequency glossy interreflections.

— Solve these problem with radiance regression
functions(RRF)



 Regression Function with augmented attributes

* Neural network structure & Training

* Input space partitioning & RRF combination



Radiance Regression Functions(RRF)

s(xp,v,1) = - P(Xp,v,v;i)(n-v;)s;i(Xp,v;)dv;

=5"(x,,v,1) + 5T (x,,v,1),

direct indirect

Xp: surface point

v: viewing direction

I: position of the point light
p: BRDF

n: surface normal




Xp: surface point

p(Xp,V,Vi) = P¢ (v,v,-,a(xp)) v: viewing direction
I: position of the point light
pc. closed-form of p p: BRDF
a(xp): a set of reflectance parameters n: surface normal
sT(xp,v,1) = o pe(V,vi,a(x,))(n(xp) - vi)s: (Xp, Vi)dv;
- 51 (xp, V1) =5, (xp, V]
\) Xpavv Sa (Xp7v7 7n(Xp)7a(Xp))
s4 (Xp,v.Ln(xp),a(xp)) = (x,, v, I'.n’,a')

New function s,* with an expanded set of attributes
— n and a do not need to be inferred from training data in regression function ®



Radiance Regression Functions(RRF)

x' =[x, v, I, ')l yl =5t (x), v, 1)
E=Y |ly' —®(x),,v,I'n',a")||*
i

RRF @ is determined by minimizing error, E

1 + weight vector w

E(W) = Z'lyl — (I)N(X;ﬁvialianiaaiaw)llz
I




input layer  1°'hidden layer 2" hidden layer output layer

1

nf] — G(zfj), Z’j = w’jo +kzbw‘jknjc
>

nlJ : node j in i-th layer ngl'o . bias weight

Ws-k : weight of the directed edge from node k to node |



input layer  1°'hidden layer 2" hidden layer output layer
o(z) = tanh(z) = 2/(1 + e %) — 1
Dy = [Py, Py, Pyl X = [Xp,V,1,n,a]

9
| 3 3 2 2 | |
DY (X, W) = wy, + E w;;i 0 (Wi + 2 WO (W + E:Wklxl))
j>0 k>0 =1



Handling scene complexity

Input Space Partitioning RRF Combination
k=K
s+(xp,v,11,...,lK) — Z ck Py (xp, v, 1k, m,a,w)
k=1

® o o
(c) Subspace
bounding box

(d) Normalized
subspace for

(a) Node in partitioned (b) Expanded

Ix : position of k-th light source

Ck : color of the k-th light

space training box training
For complex scenes, expanding the neural
network becomes infeasible for real-time
rendering Linear combination of respective point source RRF.

— By decomposing the space and fitting a
separate RRF to the training data of each region




Results

Path-tracing RRF  Difference b/w results




Results

Scene RRF Size FPS Dir. Shading Tree Trav. RRF Eval.
CornellBox 5.64MB 61.91ps 5.33ms 2.39ms 8.43ms
Plant 66.77MB 32.61ps 5.10ms 2.52ms 23.05ms
Kitchen 33.12MB 36.51ps 15.341ms 2.37ms 9.62ms
Sponza 24 81MB 60.8fps 6.75ms 2.16ms 7.54ms
Bedroom 109.09MB 6Y. 1ps 2.61ms 2.44ms 9.40ms




Limitation of RRF

« Long time for preprocessing
« Dimensionality of the input vector should not be too high

« It provides a good approximation only of the indirect
illumination near sampled viewing directions and light
positions.



2. Image—-Based Bidirectional Scene
Reprojection




 Existing upsampling strategies only reuse information
from previous frames

- smooth shading interpolation
- Higher, more stable framerate



« Temporal direction: Bidirectional

- upsamples rendered content by reusing data from both temporal

directions(forward and backward)

e Data access: Gather

- Simply involves texture lookups(index) into a previously rendered image

« Correspondence domain: Source

- Performs reprojection using only image buffers without rasterization



F; : the framebuffer of the I-frame rendered at time t

[-frames: Rendered frames

B-frames: interpolated frames (bidirectionally predicted)

Between successive I-frames F, , F,,, , there are n-1 1 n—1
B-frames, corresponding to times t+a a €

) nmn )

n n

sy - the transformation that maps the surface point p, at time t into the clip space of time t'

P = (Px,Py) : 2D coordinates of a pixel in clip space

P = (Px, Dy, Z[p]) : 3D coordinates of geometry rasterization, Z: depth buffer



* To render the full 3D scene at I-frames using conventional
methods and then insert interpolated B-frames between
these to achieve a higher framerate.

e Its algorithm reconstructs B-frames at uniformly spaced time
locations in the interval between t and t+1.

* The idea is to augment the I-frame buffers with information
about the 3D scene flow between adjacent I-frames.



th [p] = 7Tt—>t+1(15t) — D¢ : forward flow field ( encodes the motion of the scene at each pixel
between I-frames [t,t+1])

th?l_l[p] = Ti115t(Prs1) — Pr+1 : backward flow field( between I-frames [t+1,t] )

lookup combine lookup

Image-based

advect
= D+ ® Dt i1




http://research.microsoft.com/en-us/um/people/hoppe/proj/bireproj/

« Assumptions:
1. The motion between ¢tand ¢+1 is linear
2. The motion flow field is continuous and smooth

* Given psyq, find p; in field thsuch that

Pt + “th [Pt] = Pt+a
« Same for p;,,(in reverse)

* An inverse-mapping problem

Motion flow Image-space

Pt+a
[ ]




http://research.microsoft.com/en-us/um/people/hoppe/proj/bireproj/

Pto = Pria Dri = Proa —dl  where d! = aV/[py;-1]. 0

e [terative search

1. Initialize vector v with the motion flow thf[pHa]

2. Attempt to find p, using v

3. Update v with the motion flow at current p, estimate
4

Repeat 2-3
Motion flow [terative reprojection
Pt
///. +a
////////
//////
.L/L///




Iterative search - forward direction

7f = Zt[pt,m] + a[/tf [Pt m]- 2 Clip-space depth
ef = ”Pt,m + thf[pt,m]-xy_pt+a“ Screen-space error
final estimated point initial estimated point

lterative search - backward direction

Pt+1,0 = Pt+a

Pt+1,i = Pt+a — dlb d? =(1- “)Vtﬁ1[Pt+1,i—1]-Xy

2P = Z|pream]| + (1 — V&1 [Prs1m]- 2 Clip-space depth

e’ = ||pt+1,m +(1 - a)VtIzl-l[pt+1,m]-xy _pt+a|| Screen-space error



Visibility and shading

Case 1. ef el < €4 (tolerance error) and similar depths, or |Zf — Zbl <€
Blended color is

ef <eP 5 (1- a)lt[pt,m] + aliyq1[Prm + th[Pt,m]-Xy]

el >ef — (1- a)lt[pt+1,m + th+1[pt+1,m]-x3’] + ali11[Pes1,m]

Case 2: ef, el < €1 (tolerance error) and different depths

Select the color closest to the camera



Dual initialization Latest-frame initialization

p t,0 — Pt+a — dg

F d — b
;)er;Nri;\ p t,0 = Pt+a T aViii[Pe+al df _ ﬁdrf
0 o i
P 11,0 = Peta — dg
Baszlg\;vcahrd p’t+1,0 = Diyrgq + (1 — (X)th[pt+a] qb — l-«a d'b
0 — 1l

1—«
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http://research.microsoft.com/en-us/um/people/hoppe/proj/bireproj/




Limitation of Image-Based Bidirectional Scene Reprojection

« Cannot express dynamic shading effects well (highlights,
transparency etc.)

 Prone to make errors in the interpolated B-frames
wherever the local search fails



THANK YOU

Do vou have guestion or comment?




QL. In first paper, what is the number of attributes in RRF represented by neural network

+ the number of hidden layer?

a. 7/ b. 8 c. 9 d. 10

Q2. In second paper, which is correct according to temporal direction?

a. Bidirection b. One-directional c. Random directional d. All-directional



