

CS580 Final-term Project Presentation

NeRF-like Non-line-of-sight Imaging

Team 2

Kiseok Choi Donggun Kim

Non-line-of-sight (NLOS) Imaging

David B. Lindell, Computational Imaging Lecture 12(p.35), Stanford University 2021.

Team 2

Confocal vs. Non-confocal

Confocal

Related Papers

- Confocal non-line-of-sight imaging based on the light-cone transform (Nature Comm. 2018)
 - → Light Cone Transform (confocal)
- Non-line-of-sight imaging using phasor-field virtual wave optics (Nature 2019)
 - → Phasor-field (confocal, non-confocal)
- Non-line-of-Sight Imaging via Neural Transient Fields (TPAMI 2021)
 - \rightarrow NeTF (confocal, non-confocal)

Light Cone Transform (LCT)

Matthew O'Toole et al., Nature 2018

Confocal non-line-of-sight imaging based on the light-cone transform

Backprojection

Filtered Backprojection

LCT

Phasor-field

Xiaochun Liu et al., Nature 2019

Non-line-of-sight imaging using phasor-field virtual wave optics

NeTF

Siyuan Shen et al., TPAMI 2021

Non-line-of-Sight Imaging via Neural Transient Fields

Problem

- Hardware Set-up
 - Laser + SPAD sensor
 - Diffuse reflection in a relay wall
 - 3 bounce reflections during a light transport
- Requirement
 - Input: transient intensity
 - Output: 3D point cloud or front-side 2D image (with albedo or radiance)
- Method?

9

Problem

• Transient intensity (assumption: inter-reflection within scene is negligible.)

Problem Simplification

- 3-bounce model \rightarrow 1-bounce model
 - Direct energy attenuation from the light source is constant for all lighting positions (path 1).
 - Direct energy attenuation to the sensor is constant for all sensing positions (path 2).

NeRF-like NLOS Imaging

NeTF vs. Our Method

- NeTF: Final output is view-independent albedos. Confocal setup is assumed.
- Ours: Final output is view-dependent radiances Non-confocal setup is assumed.

Batch Selection

Uniform Random Sampler

Fibonacci sampling: Uniform sampling on sphere + Random rotation

Transient Ray Marcher

Ray-Ellipsoid Intersection

has the intersection at:

$$\therefore t = rac{(d_x l + au) \left(au^2 - l^2
ight)}{2 \left[d_x^2 \left(au^2 - l^2
ight) + d_y^2 au^2
ight]},$$

where $d_x = \mathbf{d} \cdot ext{normalize} \left(\mathbf{l} - \mathbf{o}
ight), \ d_y = |\mathbf{d} imes ext{normalize} \left(\mathbf{l} - \mathbf{o}
ight)| = \sqrt{1 - d_x^2}$

Single bounce **Non-confocal**

Result

Phasor-field High-res Input: 256*256*512 Out: 100*100 Phasor-field Low-res Input: 64*64*128 Out: 39*39 Ours Low-res Input: 64*64*128

Output: Any (128*128)

Experiments

Result

(Not exact)

Team 2

Experiments

Result

Novel view synthesis

Input: 64*64*128 Output: Any (128*128)

Conclusion

- We proposed NeRF-like NLOS imaging method.
 - Next generation sampling scheme (non-confocal) is applicable.
 - Rendering of an arbitrary view within limited directions is possible.
 - Improved NeRF variants are applicable for better performance. (KiloNeRF, FastNeRF, Mip-NeRF, RefNeRF etc.)
- There are several limitations in our method.
 - Training time is necessary.

Role Distribution

Kiseok Choi

- Survey of NLOS imaging papers
- Simulation data generation
- Ray marcher design & implementation
- Ray sampler/ray marcher/MLP integration
- Training a neural network
- Result analysis, Presentation preparation

Donggun Kim

- Survey of NeRF papers
- Random sampler design & implementation
- MLP implementation
- Software structure generation
- Training a neural network
- Result analysis, Presentation preparation

Reference

- Ben Mildenhall et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020, 1-25.
- Matthew O'Toole et al., Confocal non-line-of-sight imaging based on the light-cone transform, Nature 2018, Vol. 555, 338-341.
- Xiaochun Liu et al., Non-line-of-sight imaging using phasor-field virtual wave optics, Nature 2019, Vol. 572, 620-623.
- Siyuan Shen et al., Non-line-of-sight imaging via neural transient fields, TPAMI 2021, Vol. 43, No. 7, 2257-2268.