Differentiable MCRT with solutions for discontinuous integrands

20223024 Sangwon Kwak

Inverse rendering

Scene parameters

Geometry, materials, lights, camera information...

Rendering

 $I=f(p_0,p_1,\dots)$

Inverse Rendering

Scene parameters from images

Differentiable rendering

Differentiable rendering

Challenge?

Rendering integral includes visibility terms that are not differentiable at object boundaries(or discontinuities)

= Not differentiable with respect to geometric parameters

garnot.com

(4.3): position variation

Papers

Discontinuous integrands

Differentiable Monte Carlo Ray Tracing through Edge Sampling

LI et al., SIGGRAPH ASIA 2018

Solution

Reparameterizing Discontinuous Integrands for Differentiable Rendering

LOUBET et al., SIGGRAPH ASIA 2019

Differentiable Monte Carlo Ray Tracing through Edge Sampling LI et al., SIGGRAPH ASIA 2018

Key idea-Edge Sampling

(a) area sampling

Traditional sampling

Key idea-Edge Sampling

This paper

Mathematical Formulation

```
abla I = 
abla \iint f(x,y;\Phi) dx dy

\theta(\alpha(x,y)) f_u(x,y) + \theta(-\alpha(x,y)) f_l(x,y)

, where

Edge \ equation: \ \alpha(x,y)

Heaviside step function: \theta()
```


(a) half-spaces

Mathematical Formulation

$$\iint f(x,y)dxdy = \sum_{i} \iint \theta(\alpha_{i}(x,y))f_{i}(x,y)dxdy$$

$$\nabla \iint \theta(\alpha_i(x,y)) f_i(x,y) dx dy$$

$$= \iint \delta(\alpha_i(x,y)) \nabla \alpha_i(x,y) f_i(x,y) dx dy$$

+
$$\iint \nabla f_i(x,y)\theta(\alpha_i(x,y))dxdy.$$

(b) edge sampling

Discontinuous

region

(a) area sampling

Derivative of continuous region

Automatic Differentiation

Derivative of discontinuous region

$$\iint \delta(\alpha_i(x, y)) \nabla \alpha_i(x, y) f_i(x, y) dx dy$$

$$= \int_{\alpha_i(x, y)=0} \frac{\nabla \alpha_i(x, y)}{\left\|\nabla_{x, y} \alpha_i(x, y)\right\|} f_i(x, y) d\sigma(x, y)$$

MC estimator

$$\frac{1}{N} \sum_{j=1}^{N} \frac{\|E\| \nabla \alpha_{i}(x_{j}, y_{j}) (f_{u}(x_{j}, y_{j}) - f_{l}(x_{j}, y_{j}))}{P(E) \| \nabla_{x_{j}, y_{j}} \alpha_{i}(x_{j}, y_{j}) \|}$$

Secondary visibility

$$\nabla I = \nabla \iint f(x, y; \Phi) dx dy$$

Integral for primary visibility

Importance edge sampling

- Need Silhouette edges, not all edges
- Edges for arbitrary viewpoint

Edge sampling

Importance edge sampling

1. Hierarchical edge sampling

- Walter et al., "Multidimensional lightcuts", 2006
- Sander et al., "Silhouette Clipping", SIGGRAPH 2000
- Veach et al., "Optimally Combing Sampling Techniques for Monte Carlo Rendering", SIGGRAPH 1995

2. Importance sampling a single edge

- Heitz et al., "Real-time polygonal light shading with linearly transformed cosines", 2016
- Heitz et al., "Linear-Light Shading with Linearly Transformed Cosines", 2017

Edge sampling

Results

Optimize 6 vertices for triangles

Results

Optimize blocker vertices- secondary visibility

Initial guess

Target

Limitations

Assumptions

- No interpenetrating geometries and parallel edges
- Ignore shader discontinuities
- Static scenes

Performance

- Edge sampling and auto differentiation are slow
- Finding all object edges and sampling them is challenging

Reparameterizing Discontinuous Integrands for Differentiable Rendering LOUBET et al., SIGGRAPH ASIA 2019

Differentiating MC estimator(smooth case)

$$\frac{\partial}{\partial \theta} \int f(x,\theta) \, \mathrm{d}x = \int \frac{\partial}{\partial \theta} f(x,\theta) \, \mathrm{d}x$$

Leibniz integral rule

Existence and continuity of both f and its partial derivative in θ \Rightarrow Differentiating under the integral sign

MC estimator for derivative

$$\frac{\partial I}{\partial \theta} \approx \frac{1}{N} \sum \frac{\partial}{\partial \theta} \frac{f(x_i, \theta)}{p(x_i)} = \frac{\partial E}{\partial \theta}$$

The case of non-differentiable

Approach: reparametrizing integrals

$$I = \int k(x) \mathbb{I}_{x > p} \, dx$$

$$\frac{\partial I}{\partial p} = ?$$

Change of variable:
$$X = x - p$$

$$I = \int k(X + p) \mathbb{I}_{X>0} \, dx$$

- Same value of the integral
- But different partial derivatives for MC samples

Method: removing discontinuities using rotations

Key Assumption:

Integrands have small angular support

-> Discontinuities happen on the silhouette of a single object

$$I = \int_{S^2} f(\omega, \theta) d\omega = \int_{S^2} f(R(\omega, \theta), \theta) d\omega$$

MC estimator

$$E = \frac{1}{N} \sum \frac{f(R(\omega_i, \theta), \theta)}{p(\omega_i, \theta_0)} \approx I$$

(a) Differentiable rotation of directions

Integral with small support

- Previous method is for discontinuities caused by silhouette of a single object
- Then, how can we deal with large support?

Small support

Large support

Integrals with large support

Zoon in enough to make the integrand locally differentiable

Integrals with large support

Integral of a function
Integral of a convolution of this function

Integrals with large support

$$\int_{S^2} f(\omega) \, \mathrm{d}\omega = \int_{S^2} \int_{S^2} f(\mu) \underbrace{k(\mu, \omega)} \, \mathrm{d}\mu \, \mathrm{d}\omega \quad \text{,where} \int_{S^2} k(\mu, \omega) \, \mathrm{d}\mu = 1. \quad \forall \omega \in S^2$$

Set concentration parameter for k to have small angular support

MC estimator

$$I \approx E = \frac{1}{N} \sum \frac{f(R_i(\mu_i, \theta), \theta) k(R_i(\mu_i, \theta), \omega_i(\theta), \theta)}{p(\omega_i(\theta), \theta) p_k(\mu_i)}$$

Determining suitable rotations

Displacement of discontinuities w.r.t infinitesimal perturbations of scene parameters

Displacement of other positions on the associated object

Determining suitable rotations

- Sample rays within the support of the integrand against the scene geometry
- Select a single point for rotation matrix(heuristic in Appendix C)

Rotation matrix

 $\omega_P(\theta)$: Projection of the selected point onto domain S^2 θ_0 : Direction associated with the current parameter configuration

$$R(\theta_0) \omega = \omega, \ \forall \omega \in S^2 \quad \text{and} \quad \frac{\partial}{\partial \theta} R(\theta) \omega_{P_0} = \frac{\partial}{\partial \theta} \omega_P(\theta)$$

Closed-form expression

$$R = \alpha I + [\beta]_X + \frac{1}{1+\alpha} \beta^T \beta$$
, where $R\omega_a = \omega_b$

with $\alpha = \omega_a \cdot \omega_b$, $\beta = \omega_a \times \omega_b$ and

$$[u]_{x} = \begin{bmatrix} 0 & -u_{z} & u_{y} \\ u_{z} & 0 & -u_{x} \\ -u_{y} & u_{x} & 0 \end{bmatrix}$$

Variance reduction

Control variate method + α

Results

Synthetic example, optimised using 5 views (4 are shown)

Limitations

- The method relies on approximation that introduce bias
- It can be higher in some pixels and configurations

