CS580: Student Presentation mipNeRF & mipNeRF360

Dongyoung Choi (최동영)

Recap. Previous Presentation

CS580: Student Presentation mipNeRF

ICCV 2021 Oral, Best Paper Honorable Mention Jonathan T. Barron et al.

Recap. NeRF

 Render 3D object using 2D Images with camera matrix by optimizing radiance field equation via neural network

KAIS

Recap. NeRF (conti.)

NeRF can even generate unobserved view of trained object

Result of NeRF

Aliasing in multi-resolution images

Aliasing occurs when NeRF learns low resolution(1/2, ¼, ...) images

Mipmap

 Aliasing effects can be reduced by using pre-computed gaussian filtered images (prefiltering) mipmap

Cone tracing

• mipNeRF uses **cone tracing** that acts like mipmap in rendering

Ray casting in NeRF

• NeRF casts a **ray** for sampling the points

Cone casting in mipNeRF

- Instead, mipNeRF casts a cone to samples
- But sampling all points in the cones is extremely time consuming

Cone casting in mipNeRF (cont.)

• Divide cone as **multiple conical frustum**

Cone casting in mipNeRF (cont.)

Use the expectation of each conical frustum as samples!
Suppose all samples follow the Gaussian distribution
Applying positional encoding to the expectation (IPE)

Cone casting in mipNeRF (cont.)

Integrated Positional Encoding (IPE)

Integrated Positional Encoding (IPE) (cont.)

• Mean and Var is determined by the **distance** between samples!

$$\begin{aligned} \mu_{t} &= t_{\mu} + \frac{2t_{\mu}t_{\delta}^{2}}{3t_{\mu}^{2} + t_{\delta}^{2}}, \quad \sigma_{t}^{2} = \frac{t_{\delta}^{2}}{3} - \frac{4t_{\delta}^{2}(12t_{\mu}^{2} - t_{\delta}^{2})}{15(t_{\mu}^{2} + t_{\delta}^{2})^{2}}, \\ \sigma_{r}^{2} &= \dot{r}^{2} \left(\frac{t_{\mu}^{2}}{4} + \frac{5t_{\delta}^{2}}{12} - \frac{4t_{\delta}^{4}}{15(3t_{\mu}^{2} + t_{\delta}^{2})} \right) \\ \mu &= o + \mu_{t}d, \quad \sum_{r}^{2} = \sigma_{t}(dd^{T}) + \sigma_{r} \left(\begin{array}{c} radius \ dir \\ I - \frac{dd^{T}}{\|d\|_{2}^{2}} \end{array} \right) \end{aligned}$$

Result of IPE

• Get the samples including **variance information** implicitly

Importance Sampling

Increase the number of samples predicted to be important

The important samples distance would be really short!

Result of IPE (conti.)

The distance between samples is large

 -> cut off the high freq. (details)

 The distance between samples is short

 > maintain the high freq. (details)

Positional encoding features

Mean, variance of spatial region

Integrated positional encoding features

Result of IPE (conti.)

• The distance between samples is **large**

Keep the details of important samples and omit the details of unimportant samples autonomously!

Ţ		
1		
	•	

Spatial position

-> CU

-> m

The dista

Positional encoding features

Mean, variance of spatial region

Integrated positional encoding features

Result

Result

• mipNeRF shows better performance in reducing aliasing!

Summary of mipNeRF

Use cone tracing instead of ray for mipmapping

• Compute **expectations** of samples without sampling whole data

 Propose Integrated Positional Encoding (IPE) which autonomously adjusts the details of samples according to the importance

CS580: Student Presentation mipNeRF 360

CVPR 2022 Oral Jonathan T. Barron et al.

Obstacles in NeRF at 360° Scene

Parameterization

Samples of 360° scene would be located from 0 to infinity $(0, \infty)$ (Unbounded scene)

Efficiency

Huge model would be required but need long training time

Ambiguity

Since the sample range is too broad, predicting object geometry is challenging

Based Models

NeRF++: Unbounded scene (2020, arXiv)

Parameterization

• If sample distance > 1:

use the color&density of samples projected to the sphere

DONeRF: Unbounded scene (2021, Eurographics)

Parameterization

Sampling logarithmically and then warping the samples

Uniform sampling

 $\mathbf{x}(d_i) = \mathbf{o} + d_i \cdot \mathbf{r}$ $d_i = \left(d_{min} + i \cdot \frac{(d_{max} - d_{min})}{N}\right), \ i = [0, 1, 2, \cdots, N],$

Logarithmic sampling

$$\tilde{d_i} = d_{min} + \frac{\log(d_i - d_{min} + 1)}{\log(d_{max} - d_{min} + 1)} \cdot (d_{max} - d_{min}).$$

Log + Warping

$$\begin{cases} f = PE \cdot \left(x(\tilde{d}_i - c) \cdot W(x(\tilde{d}_i - c)) \right) \\ W(x) = \frac{1}{\sqrt{|x| \cdot d_{\max}}} \end{cases}$$

mipNeRF360: Rescaling for Unbounded scene

Parameterization

 Similar to NeRF++, set the boundaries (but two). If samples exceed the 1st boundary then would be converged on 2nd boundary!

mipNeRF360: Sampling for Unbounded scene

Parameterization

• Similar to DONeRF, the farther away the wider the samples are

- Uniform sampling on the inverse of distance
- Define s-distance to generalize sampling distance equation

mipNeRF360: Sampling for Unbounded scene

mipNeRF: Importance sampling

Efficiency

- First, uniformly sample the points and calculate PDF by its weight
- Second, perform Importance sampling based on the PDF of previous samples

- Distillation: train a small model to imitate the huge model
 - Reduce the evaluation of huge model!

Efficiency

Efficiency

- Separate MLP as proposal MLP and NeRF MLP (proposal «« NeRF)
- **Proposal** MLP does not predict the image directly
 - Only estimate the weights of samples

Efficiency

• Using weights on proposal network performs importance sampling

 Prevent the teaching MLP's update using "Stop Gradient" while updating student MLP

mipNeRF: Characteristic Artifacts

Ambiguity

- mipNeRF does not have special function to discriminate the surface or accurate geometry -> 2 types of artifacts
 - 1. Floater: Floating discontinuity on a scene
 - 2. Background Collapse: predicting background as a set of semitransparent cloud

Depth Result of mipNeRF

mipNeRF360: Regularization

Ambiguity

- Compress the samples and its coefficients by adding new loss
- Make the weight distribution much sharper like delta function

mipNeRF360: Regularization

Ambiguity

Successfully eliminate those artifacts!

mipNeRF360: Result

• Shows outstanding result in 360 scene!

mipNeRF, SSIM: 0.526

No. Star	
N/	

mipNeRF360, SSIM: 0.804

	1		Outdoor			Í.	Inc	loor	
	bicycle	flowers	garden	stump	treehill	room	counter	kitchen	bonsai
NeRF [13, 33]	21.76	19.40	23.11	21.73	21.28	28.56	25.67	26.31	26.81
NeRF w/ DONeRF [34] param.	21.67	19.48	23.29	23.38	21.70	28.28	25.74	25.42	27.32
mip-NeRF [3]	21.69	19.31	23.16	23.10	21.21	28.73	25.59	26.47	27.13
NeRF++ [51]	22.64	20.31	24.32	24.34	22.20	28.87	26.38	27.80	29.15
Deep Blending [17]	21.09	18.13	23.61	24.08	20.80	27.20	26.28	25.02	27.08
Point-Based Neural Rendering [26]	21.64	19.28	22.50	23.90	20.98	26.99	25.23	24.47	28.42
Stable View Synthesis [41]	22.79	20.15	25.99	24.39	21.72	28.93	26.40	28.49	29.07
mip-NeRF [3] w/bigger MLP	22.90	20.79	25.85	23.64	21.71	30.67	28.61	29.95	31.59
NeRF++ [51] w/bigger MLPs	23.75	21.11	25.91	25.48	22.77	30.13	27.79	29.85	30.68
Our Model	24.37	21.73	26.98	26.40	22.87	31.63	29.55	32.23	33.46
Our Model w/GLO	23.95	21.60	25.09	25.98	21.99	28.24	28.40	30.81	30.27

PSNR

					SSIM				
	Outdoor				1	Inc	Indoor		
	bicycle	flowers	garden	stump	treehill	room	counter	kitchen	bonsai
NeRF [13, 33]	0.455	0.376	0.546	0.453	0.459	0.843	0.775	0.749	0.792
NeRF w/ DONeRF [34] param.	0.454	0.379	0.542	0.522	0.461	0.841	0.776	0.678	0.813
mip-NeRF [3]	0.454	0.373	0.543	0.517	0.466	0.851	0.779	0.745	0.818
NeRF++ [51]	0.526	0.453	0.635	0.594	0.530	0.852	0.802	0.816	0.876
Deep Blending [17]	0.466	0.320	0.675	0.634	0.523	0.868	0.856	0.768	0.883
Point-Based Neural Rendering [26]	0.608	0.487	0.735	0.651	0.579	0.887	0.868	0.876	0.919
Stable View Synthesis [41]	0.663	0.541	0.818	0.683	0.606	0.905	0.886	0.910	0.925
mip-NeRF [3] w/bigger MLP	0.612	0.514	0.777	0.643	0.577	0.903	0.877	0.902	0.928
NeRF++ [51] w/bigger MLPs	0.630	0.533	0.761	0.687	0.597	0.883	0.857	0.888	0.913
Our Model	0.685	0.583	0.813	0.744	0.632	0.913	0.894	0.920	0.941
Our Model w/GLO	0.687	0.582	0.800	0.745	0.619	0.907	0.890	0.916	0.932
				the second second		6.			

mipNeRF360: Result

Summary of mipNeRF360

- Use contraction and warping to normalize the sample distance
- Use online distillation for efficient training
- Use regularization for solving ambiguity in unbounded scene

Total Loss :

$$\begin{aligned}
\mathcal{L}_{\text{recon}}(\mathbf{C}(\mathbf{t}), \mathbf{C}^*) + \lambda \mathcal{L}_{\text{dist}}(\mathbf{s}, \mathbf{w}) + \sum_{k=0}^{1} \mathcal{L}_{\text{prop}}(\mathbf{s}, \mathbf{w}, \hat{\mathbf{s}}^k, \hat{\mathbf{w}}^k) \\
\text{Ordinary image recon loss} + \sum_{\substack{k=0 \\ \text{ambiguity}}} \sum_{k=0}^{1} \mathcal{L}_{\text{prop}}(\mathbf{s}, \mathbf{w}, \hat{\mathbf{s}}^k, \hat{\mathbf{w}}^k) \\
\text{Loss for online distillation}
\end{aligned}$$

Thank you!

Quiz

- 1. IPE in mipNeRF can improve the performance without increasing the number of samples if they are sampled by importance sampling (True / False)
- 2. Why mipNeRF360 uses regularization in 360° scene? ()
 - 1 For parameterization
 - 2 For importance sampling
 - 3 For efficiency
 - ④ For resolving the ambiguity

Reference

- 1. Jonathan T. Barron, et al. Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields
- 2. Jonathan T. Barron, et al. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
- *3. <u>https://jonbarron.info/mipnerf/</u>*
- *4. <u>https://jonbarron.info/mipnerf360</u>*
- 5. <u>https://www.youtube.com/watch?v=zBSH-k9GbV4</u>

CS580: mipNeRF & mipNeRF360 Appendix

Integrated Positional Encoding (IPE)

Integrated Positional Encoding (IPE) (cont.)

Proof of IPE

PDF

$$\begin{split} \varphi(r,t,\theta) &= (rt\,\cos\theta,rt\,\sin\theta,t)\\ \text{for }\theta \in [0,\,2\pi),\,t \ge 0,\,|r| \le r \\ dxdydz &= |\det(D_{\varphi})(r,t,\theta)|\,drdtd\theta\\ &= \begin{vmatrix} t\cos\theta & t\sin\theta & 0\\ r\cos\theta & r\sin\theta & 1\\ -rt\sin\theta & rt\cos\theta & 0 \end{vmatrix} \\ = (rt^2\cos^2\theta + rt^2\sin\theta)drdtd\theta\\ &= rt^2drdtd\theta\\ V &= \int_{0}^{2\pi} \int_{0}^{t_1} \int_{0}^{r} rt^2drdtd\theta = \pi \dot{r}^2 \frac{t_1^3 - t_0^3}{3}.\\ P &= \frac{1}{V}. \end{split}$$

$$E[t^{2}] = \frac{1}{V} \int_{0}^{2\pi} \int_{t_{0}}^{t_{1}} \int_{0}^{\dot{r}} t^{2} \cdot rt^{2} \, dr \, dt \, d\theta$$

$$= \frac{1}{V} \int_{0}^{2\pi} \int_{t_{0}}^{t_{1}} \int_{0}^{\dot{r}} rt^{4} \, dr \, dt \, d\theta$$

$$= \frac{1}{V} \cdot \pi \dot{r}^{2} \frac{t_{1}^{5} - t_{0}^{5}}{5}$$

$$= \frac{3(t_{1}^{5} - t_{0}^{5})}{5(t_{1}^{3} - t_{0}^{3})} \cdot$$

$$E[t] = \frac{1}{V} \int_{0}^{2\pi} \int_{t_{0}}^{t_{1}} \int_{0}^{\dot{r}} t \cdot rt^{2} \, dr \, dt \, d\theta$$

$$= \frac{1}{V} \int_{0}^{2\pi} \int_{t_{0}}^{t_{1}} \int_{0}^{\dot{r}} rt^{3} \, dr \, dt \, d\theta$$

$$= \frac{1}{V} \cdot \pi \dot{r}^{2} \frac{t_{1}^{4} - t_{0}^{4}}{4}$$

$$= \frac{3(t_{1}^{4} - t_{0}^{4})}{4(t_{1}^{3} - t_{0}^{3})} \cdot$$

$$Var(t) = \sigma_{t}^{2} = E[t^{2}] - (E[t])^{2}$$

$$= \frac{3(t_{1}^{5} - t_{0}^{5})}{5(t_{1}^{3} - t_{0}^{3})} - \mu_{t}^{2}$$

Var of w.r.t. "x"(radius) $E[x^{2}] = \frac{1}{V} \int_{0}^{2\pi} \int_{t_{\pi}}^{t_{1}} \int_{0}^{\dot{r}} (rt\cos\theta)^{2} \cdot rt^{2} \, dr \, dt \, d\theta$ $= \frac{1}{V} \int_{t_{1}}^{t_{1}} \int_{0}^{\dot{r}} r^{3} t^{4} \int_{0}^{2\pi} \cos^{2}\theta \, d\theta \, dr \, dt$ $=rac{1}{V}\cdot rac{\dot{r}^4}{4}\cdot rac{t_1^5-t_0^5}{5}\cdot \pi$ $=\frac{\dot{r}^2}{4}\cdot\frac{3(t_1^5-t_0^5)}{5(t_1^3-t_0^3)}\,.$ $E[x] = \frac{1}{V} \int_0^{2\pi} \int_{t_0}^{t_1} \int_0^r (rt\cos\theta) \cdot rt \ drdtd\theta$ = 0. $Var(x) = \sigma_{x}^{2} = E[x^{2}] - (E[x])^{2}$ $=\dot{r}^{2}\left(\frac{3(t_{1}^{5}-t_{0}^{5})}{20(t_{1}^{3}-t_{0}^{3})}\right)$

Proof of IPE (conti.)

48

Proof of expectation of sin, cos following normal dist.

NeRF in Unbounded scene

- ◆ 기존 NeRF dataset에서는 "facing forward" 라는 unbounded dataset이 존재
- ◆ 이를 효과적으로 렌더링하기 위해 ray의 원점과 방향을 계산한 후, Normalized device coordinate (NDC) 변환을 거친 다음 PE를 진행

NeRF applied to "facing forward scene"

NDC in NeRF $(o+t \cdot d \rightarrow o'+t' \cdot d')$

https://blog.naver.com/PostView.naver?blogId=wnxodnr&logNo=10122064855&parentCategoryNo=26&categoryNo=&viewDate=&isShowPopularPosts=true&from=search NDC matrix proof

51

NDC in NeRF (cont.)

https://blog.naver.com/PostView.naver?blogId=wnxodnr&logNo=10122064855&parentCategoryNo=26&categoryNo=&viewDate=&isShowPopularPosts=true&from=search NDC matrix proof