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Recap. NeRF

 Render 3D object using 2D Images with camera matrix by optimizing radiance field 
equation via neural network

4



Recap. NeRF (conti.)

NeRF can even generate unobserved view of trained object 
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Result of NeRF



Aliasing in multi-resolution images

Aliasing occurs when NeRF learns low resolution(1/2, ¼, …) images

NeRF mipNeRF
Ground Truth NeRF
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Mipmap
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 Aliasing effects can be reduced by using 
pre-computed gaussian filtered images 
(prefiltering)

mipmap
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Cone tracing

mipNeRF uses cone tracing that acts like mipmap in rendering
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Ray casting in NeRF

NeRF casts a ray for sampling the points
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Cone casting in mipNeRF

 Instead, mipNeRF casts a cone to samples
 But sampling all points in the cones is extremely time 

consuming



11

Cone casting in mipNeRF (cont.)

Divide cone as multiple conical frustum
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 Use the expectation of each conical frustum as samples!
 Suppose all samples follow the Gaussian distribution
 Applying positional encoding to the expectation (IPE)

Cone casting in mipNeRF (cont.)

Suppose
Samples follow Gaussian distribution along a ray 
direction and it vertical one (multivariate Gaussian 
distribution)
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Cone casting in mipNeRF (cont.)

Suppose
Samples follow Gaussian distribution along a ray 
direction and it vertical one (multivariate Gaussian 
distribution)

 Use the expectation of each conical frustum as samples!
 Suppose all samples follow the Gaussian distribution
 Applying positional encoding to the expectation (IPE)

Achieve higher performance with 
simple changes without increasing

the number of samples!!
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Integrated Positional Encoding (IPE)
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Conical frustum equation

Positional Encoding 

Expectation

Normal distribution

Positional encoding
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Mean, Covariance matrix of conical frustum

cone dir
radius dir

Integrated Positional Encoding (IPE) (cont.)

Mean and Var is determined by the distance between samples!

𝑥 𝑥ଵ
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Result of IPE

 Get the samples including variance information implicitly
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Importance Sampling

 Increase the number of samples predicted to be important
 The important samples distance would be really short!

Weights 
(PDF)

X

Weights 
(PDF)

X

Importance 
Sampling

Important place 
(predicted)

Uniform Sampling Importance Sampling
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Result of IPE (conti.)

 The distance between samples is large
-> cut off the high freq. (details)

 The distance between samples is short
-> maintain the high freq. (details)
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Result of IPE (conti.)

 The distance between samples is large
-> cut off the high freq. (details)

 The distance between samples is short
-> maintain the high freq. (details)

Keep the details of important 
samples and omit the details of 

unimportant samples autonomously!
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Result



Result

Lego Ship

Mike Chair

mipNeRF shows better performance in reducing aliasing!
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Summary of mipNeRF

 Use cone tracing instead of ray for mipmapping

 Compute expectations of samples without sampling whole data

 Propose Integrated Positional Encoding (IPE) which 
autonomously adjusts the details of samples according to the 
importance 
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Scene and ray 
parameterization
Scene and ray 

parameterization

Coarse-to-Fine 
Online 

Distillation

Coarse-to-Fine 
Online 

Distillation

Regularization
for Interval-

Based Models

Regularization
for Interval-

Based Models

Obstacles in NeRF at 360˚ Scene

 Parameterization
Samples of 360˚scene would be located from 
0 to infinity (Unbounded scene)

 Efficiency
Huge model would be required but need 
long training time

 Ambiguity
Since the sample range is too broad, 
predicting object geometry is challenging
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Inside

Outside

NeRF++: Unbounded scene (2020, arXiv)

 If sample distance > 1:
use the color&density of samples projected to the sphere

Use the color and density of 
red points when computing 
white samples

Parameterization
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Uniform sampling

Logarithmic sampling

Log + Warping

DONeRF: Unbounded scene (2021, Eurographics)

 Sampling logarithmically and then warping the samples
Parameterization
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 contract( , )  PE of 
contraction:

Contraction function 𝒇 (linear transformation)

mipNeRF360: Rescaling for Unbounded scene

 Similar to NeRF++, set the boundaries (but two). If samples exceed the 
1st boundary then would be converged on 2nd boundary!

2nd Boundary

1st Boundary

2nd Boundary

1st Boundary

Parameterization
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𝑡: near t,   𝑡: far t

𝑠 ∈ 0,1 → [𝑡, 𝑡]

mipNeRF360: Sampling for Unbounded scene
 Similar to DONeRF, the farther away the wider the samples are

- Uniform sampling on the inverse of distance
 Define s-distance to generalize sampling distance equation

Parameterization
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𝑡: near t,   𝑡: far t

𝑠 ∈ 0,1 → [𝑡, 𝑡]

mipNeRF360: Sampling for Unbounded scene
 Similar to DONeRF, the farther away the wider the samples are

- Uniform sampling on the inverse of distance
 Define s-distance to generalize sampling distance equation

Parameterization

Contract coordinate effectively 
using 2 boundary warping and 

normalized s-distance
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mipNeRF: Importance sampling

 First, uniformly sample the points and calculate PDF by its weight
 Second, perform Importance sampling based on the PDF of previous 

samples

Efficiency
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mipNeRF360: Online distillation

Distillation: train a small model to imitate the huge model
- Reduce the evaluation of huge model!

Efficiency
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 Separate MLP as proposal MLP and NeRF MLP (proposal NeRF)
 Proposal MLP does not predict the image directly

- Only estimate the weights of samples

Efficiency

mipNeRF360: Online distillation

Teaching
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 Using weights on proposal network performs importance sampling
 Prevent the teaching MLP’s update using “Stop Gradient” while updating 

student MLP

Efficiency

mipNeRF360: Online distillation

Importance sampling
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 Using weights on proposal network performs importance sampling
 Prevent the teaching MLP’s update using “Stop Gradient” while updating 

student MLP

Efficiency

mipNeRF360: Online distillation

Importance sampling

Online distillation enable 
mipNeRF360 to perform importance 

sampling while minimizing the 
evaluation of huge MLP!
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Ambiguity

mipNeRF: Characteristic Artifacts

 mipNeRF does not have special function to discriminate the surface or 
accurate geometry -> 2 types of artifacts
1. Floater: Floating discontinuity on a scene
2. Background Collapse: predicting background as a set of semi-

transparent cloud

Depth Result of mipNeRF

floater

b.g. collapse
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Ambiguity

mipNeRF360: Regularization 

 Compress the samples and its coefficients by adding new loss
 Make the weight distribution much sharper like delta function

-> Clarify the surface of contents

Distribution loss 
term

weight

Normalized s-distance Normalized s-distance
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Ambiguity

mipNeRF360: Regularization 

 Successfully eliminate those artifacts!

Distribution loss term

mipNeRF mipNeRF
360
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mipNeRF360: Result

 Shows outstanding result in 360 scene!

mipNeRF, SSIM: 0.526

mipNeRF360, SSIM: 0.804
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mipNeRF360: Result



Summary of mipNeRF360

 Use contraction and warping to normalize the sample distance 

 Use online distillation for efficient training

 Use regularization for solving ambiguity in unbounded scene
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Total Loss :
Ordinary image recon loss Regularization for 

ambiguity Loss for online distillation



Thank you!



Quiz

1. IPE in mipNeRF can improve the performance without increasing 
the number of samples if they are sampled by importance sampling 
( True / False )

2. Why mipNeRF360 uses regularization in 360˚ scene? (  )
① For parameterization
② For importance sampling
③ For efficiency
④ For resolving the ambiguity

42
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Integrated Positional Encoding (IPE)
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Integrated Positional Encoding (IPE) (cont.)
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Proof of IPE
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Proof of IPE (conti.)
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Proof of expectation of sin, cos following normal dist.
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NeRF applied to
“facing forward scene”

기존 NeRF dataset에서는 “facing forward” 라는 unbounded dataset이 존재
이를 효과적으로 렌더링하기 위해 ray의 원점과 방향을 계산한 후, Normalized device coordinate 

(NDC) 변환을 거친 다음 PE를 진행

Normalized Device Coordinate (NDC)
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NDC in NeRF

51https://blog.naver.com/PostView.naver?blogId=wnxodnr&logNo=10122064855&parentCategoryNo=26&categoryNo=&viewDate=&isShowPopularPosts=true&from=search NDC matrix proof
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Suppose if t=0, then t’=0

NDC projection matrix

r = right, t= top,
n = near, f = far

(     ' ' ')o t d o t d    
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NDC in NeRF (cont.)
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𝑓 → ∞Supposing 
pinhole camera

    ' ' '  o t d o t d    NDC Projection (t~(0,∞) → t’~(0,1))
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