CS580: Student Presentation S580: Student Presentation
mipNeRF & mipNeRF360

Dongyoung Choi (최동영)

Recap. Previous Presentation

CS580: Student Presentation mipNeRF

ICCV 2021 Oral, Best Paper Honorable Mention Jonathan T. Barron et al.

Recap. NeRF

 Render 3D object using 2D Images with camera matrix by optimizing radiance field equation via neural network

KAIS

Recap. NeRF (conti.)
NeRF can even generate unobserved view on the set of the s

Neap. NeRF (conti.)
NeRF can even generate unobserved view of trained object

Result of NeRF

Aliasing in multi-resolution images Aliasing in multi-resolution images

Mipmap

 Aliasing effects can be reduced by using pre-computed gaussian filtered images (prefiltering)

mipmap

Cone tracing

Ray casting in NeRF

Cone casting in mipNeRF

-
- **Cone casting in mipNeRF**

 Instead, mipNeRF casts a cone to samples

 But sampling all points in the cones is extremely time ● But sampling all points in the cones is extremely time consuming

Cone casting in mipNeRF (cont.)

Divide cone as multiple conical frustum

Cone casting in mipNeRF (cont.)

. Use the expectation of each conical frustum as samples! ● Suppose all samples follow the Gaussian distribution Applying positional encoding to the expectation (IPE)

Cone casting in mipNeRF (cont.)

O Use the expectation of each conical frustum as samples!

• Suppc • Achieve higher performance with ition • Apply simple changes without increasing (IPE) the number of samples!!

 $E_{\mathbf{x} \sim \mathcal{N}}[\gamma(\mathbf{x})]$

Integrated Positional Encoding

Suppose

Samples follow Gaussian distribution along a ray direction and it vertical one (multivariate Gaussian distribution)

Integrated Positional Encoding (IPE)

Integrated Positional Encoding (IPE) (cont.)

• Mean and Var is determined by the distance between samples!

2 2 2 2 ² 2 2 2 2 2 2 2 2 4 2 2 2 2 2 4 (12) , , 3 3 15() 5 4 4 12 15(3) t t r t t t t t t t t t t t t t t r t t T T 2 2 , = () t t r dd o d dd I d t Mean, Covariance matrix of conical frustum cone dir radius dir

Result of IPE

Get the samples including variance information implicitly

Importance Sampling

• Increase the number of samples predicted to be important

• The important samples distance would be really short!

Result of IPE (conti.)

• The distance between samples is large -> cut off the high freq. (details) • The distance between samples is short -> maintain the high freq. (details)

Mean, variance of spatial region

Integrated positional encoding features

18

Spatial position

Positional encoding features

Result of IPE (conti.)

• The distance between samples is large

 \rightarrow cut of the high frequency of the high freq. (details) • The distance between same we have been samples in the same $\gamma > m$ samples and only the details of Keep the details of important samples and omit the details of unimportant samples autonomously!

Mean, variance of spatial region

Integrated positional encoding features

Spatial position

Positional encoding features

Result

Result

ult

DNeRF shows better performance in reducing aliasing!

Lego Ship Mike Chair Result

• mipNeRF shows better performance in reducing aliasing!

Lego Ship

Summary of mipNeRF

• Use cone tracing instead of ray for **mipmapping**

• Compute expectations of samples without sampling whole data

• Propose Integrated Positional Encoding (IPE) which autonomously adjusts the details of samples according to the importance

CS580: Student Presentation Student Presentation
mipNeRF 360

CVPR 2022 Oral Jonathan T. Barron et al.

Obstacles in NeRF at 360° Scene

Parameterization

Samples of 360˚scene would be located from 0 to infinity $(0, \infty)$ (Unbounded scene)

• Efficiency

Huge model would be required but need long training time

• Ambiguity

Since the sample range is too broad, predicting object geometry is challenging

Based Models

NeRF++: Unbounded scene (2020, arXiv) $kF++$: Unbounded scene (2020, arXiv)

any distance > 1:

use the color&density of samples projected to the sphere

Parameterization

If sample distance > 1 :

25

DONeRF: Unbounded scene (2021, Eurographics)

Parameterization

● Sampling logarithmically and then warping the samples

Uniform sampling

$$
\mathbf{x}(d_i) = \mathbf{0} + d_i \cdot \mathbf{r}
$$

$$
d_i = \left(d_{min} + i \cdot \frac{(d_{max} - d_{min})}{N}\right), i = [0, 1, 2, \cdots, N],
$$

Logarithmic sampling

$$
\tilde{d}_i = d_{min} + \frac{\log(d_i - d_{min} + 1)}{\log(d_{max} - d_{min} + 1)} \cdot (d_{max} - d_{min}).
$$

 $f = PE. (x(\tilde{d}_i - c) \cdot W(x(\tilde{d}_i - c)))$ $W(x) = \frac{1}{\sqrt{1-x^2}}$ $=$ Log + Warping

max

 $x \cdot d_{\text{max}}$

 $\ddot{\cdot}$

mipNeRF360: Rescaling for Unbounded scene

Parameterization

● Similar to NeRF++, set the **boundaries (but two)**. If samples exceed the 1st boundary then would be converged on 2nd boundary!

mipNeRF360: Sampling for Unbounded scene ipNeRF360: Sampling for Unbounded

Uniform sampling on the inverse of distance

Uniform sampling on the inverse of distance

Define s-distance to generalize sampling distance equation

Parameterization

Similar to DONeRF, the farther away the wider the samples are

-
- Define s-distance to generalize sampling distance equation

mipNeRF360: Sampling for Unbounded scene

mipNeRF: Importance sampling

-
- mipNeRF: Importance sampling

First, uniformly sample the points and calculate PDF by its weight

 Second, perform Importance sampling based on the PDF of previous

samples Second, perform Importance sampling based on the PDF of previous samples

mipNeRF360: Online distillation **MipNeRF360: Online distillation

Efficiency**
• Distillation: train a small model to imitate the huge model
- Reduce the evaluation of huge model!

- -

mipNeRF360: Online distillation

- Separate MLP as proposal MLP and NeRF MLP (proposal $\ll \ll$ NeRF)
- Proposal MLP does not predict the image directly
	-

mipNeRF360: Online distillation

Efficiency

Using weights on proposal network performs importance sampling

Prevent the teaching MLP's update using "Stop Gradient" while updating student MLP

mipNeRF360: Online distillation

mipNeRF: Characteristic Artifacts

Ambiguity

- mipNeRF does not have special function to discriminate the surface or accurate geometry -> 2 types of artifacts
	- **1. Floater:** Floating discontinuity on a scene
	- 2. Background Collapse: predicting background as a set of semitransparent cloud

Depth Result of mipNeRF

mipNeRF360: Regularization

Ambiguity

- Compress the samples and its coefficients by adding new loss
- Make the weight distribution much sharper like delta function
	- -> Clarify the surface of contents

36

mipNeRF360: Regularization

Ambiguity

Successfully eliminate those artifacts!

mipNeRF360: Result

• Shows outstanding result in 360 scene!

mipNeRF, SSIM: 0.526

mipNeRF360, SSIM: 0.804

PSNR

KAIS 38

mipNeRF360: Result

Summary of mipNeRF360

- **Use contraction** and **warping** to **normalize** the sample distance
- **Use online distillation** for efficient training
- **Use regularization** for solving **ambiguity** in unbounded scene

Total Loss :
$$
\mathcal{L}_{\text{recon}}(C(t), C^*) + \lambda \mathcal{L}_{\text{dist}}(s, w) + \sum_{k=0}^{1} \mathcal{L}_{\text{prop}}(s, w, \hat{s}^k, \hat{w}^k)
$$

Equarization for
ambiguity

Thank you!

Quiz

- **Quiz**
1. IPE in mipNeRF can improve the performance without increasing
the number of samples if they are sampled by importance sampling
(True / False) the number of samples if they are sampled by importance sampling (True / False)
- 2. Why mipNeRF360 uses regularization in 360˚ scene? ()
	- ① For parameterization
	- ② For importance sampling
	- ③ For efficiency
	- ④ For resolving the ambiguity

Reference

- 1. Jonathan T. Barron, et al. Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields
- **Reference**
2. Jonathan T. Barron, et al. Mip-NeRF: A Multiscale Representation for Anti-Aliasing
2. Jonathan T. Barron, et al. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance
5. <u>https://jonbarron.info/mipnerf/</u> Fields
- 3. https://jonbarron.info/mipnerf/
- 4. https://jonbarron.info/mipnerf360
- 5. https://www.youtube.com/watch?v=zBSH-k9GbV4

CS580: CS580:

mipNeRF & mipNeRF360

Appendix Appendix

Integrated Positional Encoding (IPE)

Integrated Positional Encoding (IPE) (cont.)

Proof of IPE

 $\varphi(r,t,\theta) = (rt \cos\theta, rt \sin\theta, t)$ for $\theta \in [0, 2\pi), t \ge 0, |r| \le r$ $=(rt^2 \cos^2 \theta + rt^2 \sin \theta) dr dt d\theta$ $= rt^2 dr dt d\theta$ $dx dy dz = |\det(D_{\varphi})(r, t, \theta)| dr dt d\theta$ $t \cos \theta$ $t \sin \theta$ 0 $= |r \cos \theta - r \sin \theta | 1 | dr dt d\theta$ $-rt\sin\theta$ $rt\cos\theta$ 0 1 0 $\int_{a}^{2\pi i_1 i} \int_{a}^{b} r t^2 dr dt d\theta = \pi \dot{r}^2 \frac{t_1^3 - t_0^3}{a}$ $0 \t t_0 \t 0$. 3 $P=\frac{1}{\cdots}$. t_1 \dot{r} t $V = \int_{0}^{2\pi} \int_{0}^{t_1} r t^2 dr dt d\theta = \pi \dot{r}^2 \frac{t_1^3 - t_0^3}{3}.$ V $=$ ŕ

$$
E[t^2] = \frac{1}{V} \int_0^{2\pi} \int_{t_0}^{t_1} \int_0^{\dot{r}} t^2 \cdot rt^2 \, dr \, dt \, d\theta
$$

\n
$$
= \frac{1}{V} \int_0^{2\pi} \int_{t_0}^{t_1} \int_0^{\dot{r}} rt^4 \, dr \, dt \, d\theta
$$

\n
$$
= \frac{1}{V} \cdot \pi \dot{r}^2 \frac{t_1^5 - t_0^5}{5}
$$

\n
$$
= \frac{3(t_1^5 - t_0^5)}{5(t_1^3 - t_0^3)}.
$$

\n
$$
E[t] = \frac{1}{V} \int_0^{2\pi} \int_{t_0}^{t_1} \int_0^{\dot{r}} t \cdot rt^2 \, dr \, dt \, d\theta
$$

\n
$$
= \frac{1}{V} \int_0^{2\pi} \int_{t_0}^{t_1} \int_0^{\dot{r}} rt^3 \, dr \, dt \, d\theta
$$

\n
$$
= \frac{1}{V} \cdot \pi \dot{r}^2 \frac{t_1^4 - t_0^4}{4}
$$

\n
$$
= \frac{3(t_1^4 - t_0^4)}{4(t_1^3 - t_0^3)}.
$$

\n
$$
Var(t) = \sigma_t^2 = E[t^2] - (E[t])^2
$$

\n
$$
= \frac{3(t_1^5 - t_0^5)}{5(t_1^3 - t_0^3)} - \mu_t^2
$$

PDF

Var of w.r.t. "t"

Var of w.r.t. "x"(radius)

PDF
 $\varphi(r,t,\theta) = (rt\cos\theta,rt\sin\theta,t)$
 $= \frac{1}{2}\int_{0}^{2\pi} \int_{t_0}^{t_1} \int_0^r t^2 \cdot rt^2 \, dt \, dt \, d\theta$
 $= \frac{1}{2}\int_{0}^{2\pi} \int_{t_1}^{t_1} \int_0^r rt^4 \, dt \, dt \, d\theta$
 $= \frac{1}{2}\int_{0}^{2\pi} \int_{t_1}$ $=\frac{1}{V}\cdot\frac{\dot{r}^4}{4}\cdot\frac{t_1^5-t_0^5}{5}\cdot\pi$ $=\frac{\dot{r}^2}{4}\cdot\frac{3(t_1^5-t_0^5)}{5(t_1^3-t_0^3)}\,.$ $[x]=\frac{1}{\kappa}\int_{0}^{2\pi}\int_{0}^{t_1}\int_{0}^{r}(rt\cos\theta)\cdot rt\,dr$ $=\frac{1}{V}\int_0^{2\pi}\int_{t_0}^{t_1}\int_0^r (rt\cos\theta)\cdot rt\ dr dt d\theta$ 2 $E[x] = \frac{1}{V} \int_0^{2\pi} \int_{t_0}^{t_1} \int_0^r (rt\cos\theta) \cdot rt \, dr dt d\theta$ 1 0 J_{t_0} J₀ V 0 $=0.$ $Var(x) = \sigma_r^2 = E[x^2] - (E[x])^2$ $\left(3(t_1^5-t_0^5)\right)$ $= \dot{r}^2 \left(\frac{3(t_1^5 - t_0^5)}{20(t_1^3 - t_0^3)} \right).$ $\dot{r}^2 \left(\frac{3(t_1^5-t_0^5)}{20(t_1^3-t_0^3)} \right)$ $e^2\left(\frac{3(t_1^5-t_0^5)}{20(t_1^3-t_0^3)}\right)$ $=\dot{r}^2\bigg(\frac{5(t_1-t_0)}{20(t_1^3-t_0^3)}\bigg).$

> **KAIS** 47

Proof of IPE (conti.)

48

2

Proof of expectation of sin, cos following normal dist.

NeRF in Unbounded scene
• 기존 NeRF dataset에서는 "facing forward" 라는 unbounde

-
- **NeRF in Unbounded scene**
◆ 기존 NeRF dataset에서는 "facing forward" 라는 unbounded dataset이 존재
◆ 이를 효과적으로 렌더링하기 위해 ray의 원점과 방향을 계산한 후, Normalized device coordinate
(NDC) 변환을 거친 다음 PE를 진행 이를 효과적으로 렌더링하기 위해 ray의 원점과 방향을 계산한 후, Normalized device coordinate (NDC) 변환을 거친 다음 PE를 진행

"facing forward scene"

NDC in NeRF $(o+t \cdot d \rightarrow o'+t' \cdot d')$

https://blog.naver.com/PostView.naver?blogId=wnxodnr&logNo=10122064855&parentCategoryNo=26&categoryNo=&viewDate=&isShowPopularPosts=true&from=search NDC matrix proof

51

https://blog.naver.com/PostView.naver?blogId=wnxodnr&logNo=10122064855&parentCategoryNo=26&categoryNo=&viewDate=&isShowPopularPosts=true&from=search NDC matrix proof