NeRF-like Approaches for Light Transport Algorithms

2022-05-02 Kyubeom Han

NeRF and Volume Rendering

- What about other light transport algorithms?
- Especially, what we learned in CS580?

NeRF and Light Transport Algos.

- Neural Radiosity (SIGGRAPH ASIA 2021)
 - Path Tracing + Radiosity + NeRF

- Real-time Neural Radiance Caching for Path Tracing (SIGGRAPH 2021)
 - Path Tracing + Radiance Caching + NeRF

Neural Radiosity

Hadadan et al., SIGGRAPH Asia 2021

Main Contribution

Solving the Rendering Equation by Radiance-predicting Neural Network via Radiosity-like Training

Main Contribution

Solving the Rendering Equation by Radiance-predicting Neural Network via Radiosity-like Training

$$L_{o}(x, \overrightarrow{w_{o}}) = L_{e}(x, \overrightarrow{w_{o}}) + \int_{\Omega} f_{r}(x, \overrightarrow{w_{i}}, \overrightarrow{w_{o}}) L_{i}(x, \overrightarrow{w_{i}}) (\overrightarrow{w_{i}} \cdot \overrightarrow{n}) d\overrightarrow{w_{i}}$$
$$\sim L_{e}(x, \overrightarrow{w_{o}}) + \frac{1}{N} \sum_{k=1}^{N} \frac{f_{r}(x, \overrightarrow{w_{i}^{k}}, \overrightarrow{w_{o}}) L_{i}(x, \overrightarrow{w_{i}^{k}}) (\overrightarrow{w_{i}^{k}} \cdot \overrightarrow{n})}{p(\overrightarrow{w_{i}^{k}})}$$

Solving rendering equation via Monte Carlo Integration

$$L_o(x, \overrightarrow{w_o}) = L_e(x, \overrightarrow{w_o}) + \int_{\Omega} f_r(x, \overrightarrow{w_i}, \overrightarrow{w_o}) L_i(x, \overrightarrow{w_i}) (\overrightarrow{w_i} \cdot \overrightarrow{n}) d\overrightarrow{w_i}$$

$$\sim L_e(x, \overrightarrow{w_o}) + L_{\theta}(x, \overrightarrow{w_o})$$

Solving rendering equation via Radiance-predicting Neural Network L_{θ}

- Generating ground truth is to solve the rendering equation → Too much overhead!
- How to train without the ground truth radiance?

Radiosity: Recap

- Iteratively updating the radiosity of each polygon
 - Jacobi / Gauss-Seidel iteration

11

Radiosity: Recap

- Iteratively updating the radiosity of each polygon
 - Jacobi / Gauss-Seidel iteration
- Updating allows to consider further light bounces

 Minimize the difference between the directly estimated outgoing radiance (LHS) and calculated outgoing radiance from estimated incoming radiances(RHS)

 LHS: Outgoing radiance directly estimated by the network

- RHS: Outgoing radiance calculated from estimated incoming radiances
 - But we still have a rendering equation to solve...

- RHS: Outgoing radiance calculated from estimated incoming radiances
 - Use Monte Carlo Integration!
 - Estimate the incoming radiance of the sampled $\omega_{i,k}, x'_k(x, \omega_{i,k})$

Reducing the Residual Norm

• Residual norm $r_{\theta}(x, \omega_o)$

$$\begin{aligned} r_{\theta}(x,\omega_{o}) \\ &= L_{\theta}(x,\omega_{o}) - L_{e}(x,\omega_{o}) - \frac{1}{M} \sum_{k=1}^{M} \frac{f(x,\omega_{o},\omega_{i,k})L_{\theta}(x'_{k}(x,\omega_{i,k}),-\omega_{i,k})}{p(\omega_{i,k})} \\ &= L_{\theta}(x,\omega_{o}) - L_{e}(x,\omega_{o}) - T\{L_{\theta}\}(x,\omega_{o}) \end{aligned}$$

•
$$Loss(\theta) = ||r_{\theta}(x, \omega_o)||^2$$

- Relative Loss(θ) = $\left\| \frac{r_{\theta}(x,\omega_{o})}{sg(m_{\theta}(x,\omega_{o}))+\varepsilon} \right\|_{2}^{2}$
 - For a stable training with high dynamic range radiances

•
$$m_{\theta}(x,\omega_o) = \frac{1}{2} \left(L_{\theta}(x,\omega_o) + L_e(x,\omega_o) + T\{L_{\theta}\}(x,\omega_o) \right)$$

• *sg*: stop gradient

Training with Neural Radiosity

 Now, we do not need to directly solve/approximate the rendering equation!

ALGORITHM 1: Minibatch stochastic gradient descent, learning rate η .

initialize network parameters θ ;

while not converged do sample a set of surface points $\{x_j | j = 1...N\}$ and outgoing directions $\{\omega_{o,j} | j = 1...N\}$; for each $(x_j, \omega_{o,j})$, sample a set of incident directions $\{\omega_{i,j,k} | k = 1...M\}$; use the samples to evaluate the Monte Carlo estimate of $\nabla_{\theta} \mathcal{L}(\theta)$ using Equations 6 and 8; $\theta = \theta - \eta \nabla_{\theta} \mathcal{L}(\theta)$; end

return θ ;

Training with Neural Radiosity

- Training takes more time that Path Tracing
 - 3~5 minutes per 1000 steps...
- But shows various applications once trained...

Main Contribution

Solving the Rendering Equation by Radiance-predicting Neural Network via Radiosity-like Training

$$L_o(x, \overrightarrow{w_o}) = L_e(x, \overrightarrow{w_o}) + \int_{\Omega} f_r(x, \overrightarrow{w_i}, \overrightarrow{w_o}) L_i(x, \overrightarrow{w_i}) (\overrightarrow{w_i} \cdot \overrightarrow{n}) d\overrightarrow{w_i}$$

$$\sim L_e(x, \overrightarrow{w_o}) + L_{\theta}(x, \overrightarrow{w_o})$$

Solving rendering equation via Radiance-predicting Neural Network L_{θ}

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall et al., ECCV 2020 Plenoxels: Radiance Fields without Neural Networks, Yu et al., CVPR 2022

Positional Encoding is not Enough

 Positional encoding like *NeRF* does not show better performance

$$L_{\theta}(x,\omega_{o}) = MLP\begin{pmatrix} x\\ \gamma(x)\\ \omega_{o} \end{pmatrix}, \quad \gamma(x) = \begin{pmatrix} \sin(2^{o}\pi x)\\ \cos(2^{o}\pi x)\\ \vdots\\ \sin(2^{k-1}\pi x)\\ \cos(2^{k-1}\pi x) \end{pmatrix}$$

- Instead, use a multi-resolution feature grid with trainable features!
 - Similar approach with *Plenoxels*, but with more scale

Multi-resolution Feature Grid

- Idea & Implementation borrowed from NGLOD
 - Neural Geometric Level of Detail, CVPR 2021
- Features of the query point as interpolated feature vectors of each level of voxel grids
- Allows better performance with using relatively shallow network

Multi-resolution Feature Grid

Training step

Results – Rendering RHS Ground Truth Relat

Relative Residual

RHS/Truth Absolute Error

Results – View Synthesis

 Trained network represents the entire radiance distribution of the scene → Multi-view Synthesis!

Results – Material Support

- Good quality for various materials
 - Note that original radiosity method only supported diffuse effects!

Results – Dynamic Scenes

 Apply transfer learning for dynamic scenes instead of retraining

Results – Dynamic Scenes

 Apply transfer learning for dynamic scenes instead of retraining

MAPE: 0.257

0.044

0.025

MAPE: 0.060

LHS (initial) RHS (initial) Residual (initial) LHS (finetuned) RHS (finetuned) Residual (finetuned) Ground Truth

Neural Radiosity: Wrap-up

- A radiosity-like training to learn the entire radiance distribution of the scene
- Multi-resolution feature grid for new positional encoding
- Applied to multi-view synthesis, rendering dynamic scenes via transfer learning

Real-time Neural Radiance Caching for Path Tracing

Muller et al. SIGGRAPH 2021
Main Contributions

Radiance Caching with Neural Radiance Field

Self-training with Fast Adaptation

Other Techniques for Real-time Path Tracing

Main Contributions

Radiance Caching with Neural Radiance Field

Self-training with Fast Adaptation

Other Techniques for Real-time Path Tracing

Irradiance Caching: Recap

- Biased GI algorithm
- Cache the irradiance of the point

Irradiance Caching: Recap

- Biased GI algorithm
- Cache the irradiance of the point

Irradiance Caching: Recap

- Biased GI algorithm
- Cache the irradiance of the point
- Interpolate the irradiance of the query point

Radiance Caching for Efficient Global Illumination Computation, Krivanek et al., TVCG 2005 Plenoxels: Radiance Fields without Neural Networks, Yu et al., CVPR 2022

Radiance Caching

- Adding a directional information for caching
- Use Spherical Harmonics H_l^m like **Plenoxels**
 - $L_i(\theta, \phi) \approx \sum_{l=0}^{n-1} \sum_{m=-l}^l \lambda_l^m H_l^m(\theta, \phi)$
- Interpolate the coefficients λ_l^m

Radiance caching

Monte Carlo sampling

4Z

Neural Radiance Cache

$$L_o(x, \overrightarrow{w_o}) = L_e(x, \overrightarrow{w_o}) + \int_{\Omega} f_r(x, \overrightarrow{w_i}, \overrightarrow{w_o}) L_i(x, \overrightarrow{w_i}) (\overrightarrow{w_i} \cdot \overrightarrow{n}) d\overrightarrow{w_i}$$

$$\sim L_e(x, \overrightarrow{w_o}) + L_{\theta}(x, \overrightarrow{w_o})$$

Solving rendering equation via Radiance-predicting Neural Network L_{θ}

Neural Radiance Cache

$$L_o(x, \overrightarrow{w_o}) = L_e(x, \overrightarrow{w_o}) + \int_{\Omega} f_r(x, \overrightarrow{w_i}, \overrightarrow{w_o}) L_i(x, \overrightarrow{w_i}) (\overrightarrow{w_i} \cdot \overrightarrow{n}) d\overrightarrow{w_i}$$

$$\sim L_e(x, \overrightarrow{w_o}) + L_{\theta}(x, \overrightarrow{w_o})$$

Train the neural network \rightarrow Cache, Estimate the radiance \rightarrow Interpolate

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall et al., ECCV 2020 Neural Importance Sampling, Muller et al., SIGGRAPH 2019

Neural Radiance Cache

Inputs for Neural Radiance Cache

$$req(x) = \begin{pmatrix} \sin(2^0\pi x) \\ \cos(2^0\pi x) \\ \vdots \\ \sin(2^{k-1}\pi x) \\ \cos(2^{k-1}\pi x) \end{pmatrix}$$

Positional Encoding from NeRF

$$ob(x) = Gaussian(x, \frac{1}{k})$$

One-blob Encoding from *Neural Importance Sampling*

Rendering with Neural Radiance Caching

• Trace a short rendering path $(x_0x_1x_2)$ where we used the cached(estimated) radiance in vertex x_2 $L_{\theta}(x_2, \overrightarrow{w_o})$

• When do we terminate?

Rendering with Neural Radiance Caching

• Terminate when the **area spread** $a(x_1 \dots x_n)$ becomes large enough to blur the inaccuracy in trained cache a_0

•
$$a(x_1 \dots x_n) > c \cdot a_0$$

•
$$a_0 = \frac{\|x_0 - x_1\|^2}{4\pi \cos\theta_1}$$
, $a(x_1 \dots x_n) = \left(\sum_{i=2}^n \sqrt{\frac{\|x_0 - x_1\|^2}{p(\omega_i | x_{i-1}, \omega) | \cos\theta_i |}}\right)^2$

A Custom Designed Density Estimation Method for Light Transport, Bekaert et al., Techinical Report 2003

Rendering with Neural Radiance Caching

 Heuristic termination helps to avoid using poorly cached radiances in the primary hit vertex

Rendering with Neural Radiance Caching

Caculate the radiance using the estimated radiance

•
$$L(x_1, \omega_1) = L_e(x_2, \omega_2) + \frac{L_\theta(x_2, \omega_2)f(x_1, w_2, w_1)\cos(\omega_1 \cdot n_1)}{p(-\omega_2)}$$

Main Contributions

Radiance Caching with Neural Radiance Field

Self-training with Fast Adaptation

Other Techniques for Real-time Path Tracing

- Trace a short rendering path $(y_0y_1y_2)$
- Estimate the radiance of y_2 and calculate the radiance the sample

- Extend the rendering path with few vertices $(\cdots y_2 y_3 y_4)$
- We use the same light sample for rendering & training!

- Estimate the radiance in $y_4: L_{\theta}(y_4, \omega_4)$
- Calculate the radiances on preceding vertices using the estimated radiance above
 - L_1, L_2, L_3

- Minimize the loss between the calculated radiances and the estimated radiances of the preceding vertices
- Loss = $relL2(L_1, L_{\theta}(y_1, \omega_1)) + relL2(L_2, L_{\theta}(y_2, \omega_2)) + relL2(L_3, L_{\theta}(y_3, \omega_3))$

- No ground truth needed → Self-training!
 - Similar to Neural Radiosity

- High learning rate & Multiple gradient descent steps per frame with random subset of ray batches → Fast Adaptation!
 - One frame with 1spp, FHD \rightarrow Batch size 2^{12}
 - Iteratively done for each frames

Limitations of Self-training

- What if the training path hits the surface never reached?
 - Results in unstable training...
- What if the extended vertices are close together?
 - Cannot complete cover the global illumination effect

Limitations of Self-training

- For balancing two issues, extend every Nth sample which is terminated by Russian roulette.
 - Can construct more unbiased training paths

Main Contributions

Radiance Caching with Neural Radiance Field

Self-training with Fast Adaptation

Other Techniques for Real-time Path Tracing

Temporal Stability via EMA (Exponential Moving Average)

 Aggressive fast adaptation strategy might lead to overfitting, creating temporal artifacts like flickering

•
$$\overline{W}_t = \frac{1-\alpha}{\eta_t} \cdot W_t + \alpha \cdot \eta_{t-1} \cdot \overline{W}_{t-1}, \eta_t = 1 - \alpha^t$$

EMA weight $\alpha = 0.00$ EMA weight $\alpha = 0.90$ EMA weight $\alpha = 0.99$

Fully-Fused Network

Reducing memory bottleneck highly increases training & inference speed

Efficient encoding for faster gradient computations

- Approximate the encoding functions into polynomial functions for faster gradient computations
- Buys 0.25ms per frame (1spp)

Spatiotemporal Reservoir Resampling for Real-time Ray Tracing with Dynamic Direct Lighting, Bitterli et al., SIGGRAPH 2020

Results – 1spp Video

Path tracing

Results – 1spp Video

Spatiotemporal Reservoir Resampling for Real-time Ray Tracing with Dynamic Direct Lighting, Bitterli et al., SIGGRAPH 2020 Neural Temporal Adaptive Sampling and Denoising, Hasselgren et al., Computer Graphics Forum 2020

Results – With Image Denoiser

Results – Fast Adaptation

Visualization of NRC at the primary path vertex

Neural Radiance Cache: Wrap-up

- Introducing a radiance caching technique by training a radiance-caching neural network
- Self-training with Fast Adaptation to achieve realtime for rendering & training
- Vast number of techniques to achieve real time

Appendices

Neural Radiosity

Rendering with Neural Radiosity

- Gather radiances estimated on the first bounce
- Gather radiances calculated with estimated incoming radiances into the first bounce

Rendering with Neural Radiosity

 Rendering with RHS shows better quality, but has more overhead due to the calculation

Multi-resolution Feature Grid

- Idea & Implementation borrowed by NGLOD
 - Neural Geometry Level of Details, CVPR 2021
- Originally for better representation of SDF

Multi-resolution Feature Grid

- Each level of voxel grids have trainable vectors
- Voxel Octree to implement multi-resolution voxel grids

Multi-resolution Feature Grid

- Features of the query point as interpolated feature vectors of each level of voxel grids
- Allows better performance with using relatively shallow network

$$L_{\theta}(x,\omega_{o}) = MLP\begin{pmatrix} x\\G(x)\\\omega_{o} \end{pmatrix}, \quad G(x) = \frac{1}{n}\sum_{0}^{n-1}trilinear(x,V_{i}[x])$$

Appendices

Real-time Neural Radiance Caching for Path Tracing

One-blob Encoding

Smoothes the one-hot vectors to reduce loss of information

Temporal Stability via EMA

- Aggressive self-training strategy might lead to overfitting, creating temporal artifacts like flickering
- To reduce such phenomenon, we average the network weights via EMA

•
$$\overline{W}_t = \frac{1-\alpha}{\eta_t} \cdot W_t + \alpha \cdot \eta_{t-1} \cdot \overline{W}_{t-1}, \eta_t = 1 - \alpha^t$$

• $\alpha = 0.99$

Temporal Stability via EMA

 Aggressive self-training strategy might lead to overfitting, creating temporal artifacts like flickering

•
$$\overline{W}_t = \frac{1-\alpha}{\eta_t} \cdot W_t + \alpha \cdot \eta_{t-1} \cdot \overline{W}_{t-1}, \eta_t = 1 - \alpha^t$$

EMA weight $\alpha = 0.00$ EMA weight $\alpha = 0.90$ EMA weight $\alpha = 0.99$

 A new GPU kernel that highly reduces the memory bottleneck between high-level memory(VRAM) and on-chip memory (low-level cahces, registers, etc...)

(a) Batched neural network evaluation

(b) Distribution of a batch over thread blocks

(c) Per-thread-block matrix multiplication

- Divide the large batch (2¹² for FHD 1920x1080) into small minibatches (128)
 - Might differ by capacity of on-chip memory of GPU
- Each minibatch is used for training in each thread parallely
 - Divide the large batch (2¹² for FHD 19: minibatches (128)
 - Might differ by capacity of on-chip memo
 - Each minibatch is used for training in ϵ

- The memory consumption of the matrix multiplication in each thread are set to perfectly fit the low-level memory
 - Specifically, multiplication of each row & column
 - For GTX 3090, minibatch of 128 and hidden layer of 64 fully utilizes its register

Reducing memory bottleneck highly increases training & inference speed

- Reducing memory bottleneck highly increases training & inference speed
- Fast image learning with high resolution (3250x4333)

0 ms

420 ms

GT

Reflectance Factorization

• Helps the network to focus on details by light transport rather than texture details

Visualization of factored neural radiance cache at primary vertex

Results – Numerical Results

Results – Volume Rendering

Spatiotemporal Reservoir Resampling for Real-time Ray Tracing with Dynamic Direct Lighing, Bitterli et al., SIGGRAPH 2020 Dynamic Diffuse Global Illumination with Ray-traced Irradiance Fields, Majercik et al., JCGT 2019

Results – Rendering Cost

Table 3.	Breakdown	of rendering	cost by	/ component.
----------	-----------	--------------	---------	--------------

Scene	Method	Trace & shade	Query	Training	Total
Attic	PT+ReSTIR PT+ReSTIR+DDGI PT+ReSTIR+NRC	12.96 ms 11.56 ms 10.88 ms	 0.64 ms 1.66 ms		12.96 ms 13.98 ms 13.66 ms
Bistro	PT+ReSTIR PT+ReSTIR+DDGI PT+ReSTIR+NRC	13.75 ms 12.71 ms 11.96 ms	0.65 ms 1.38 ms	 1.68 ms 1.11 ms	13.75 ms 15.04 ms 14.45 ms
Classroom	PT+ReSTIR PT+ReSTIR+DDGI PT+ReSTIR+NRC	18.06 ms 12.93 ms 12.28 ms	0.59 ms 1.70 ms	 1.65 ms 1.11 ms	18.06 ms 15.17 ms 15.09 ms
Living Room	PT+ReSTIR PT+ReSTIR+DDGI PT+ReSTIR+NRC	8.32 ms 5.68 ms 5.82 ms	 0.52 ms 1.85 ms	 0.99 ms 1.11 ms	8.32 ms 7.19 ms 8.78 ms
Pink Room	PT+ReSTIR PT+ReSTIR+DDGI PT+ReSTIR+NRC	6.73 ms 5.56 ms 5.36 ms	 0.52 ms 1.54 ms	 0.89 ms 1.12 ms	6.73 ms 6.97 ms 8.02 ms
Zero Day	PT+ReSTIR PT+ReSTIR+DDGI PT+ReSTIR+NRC	13.89 ms 8.34 ms 8.67 ms	0.54 ms 1.41 ms	 1.21 ms 1.09 ms	13.89 ms 10.09 ms 11.17 ms
Average	PT+ReSTIR PT+ReSTIR+DDGI PT+ReSTIR+NRC	12.29 ms 9.46 ms 9.16 ms	0.58 ms 1.59 ms	1.37 ms 1.11 ms	12.29 ms 11.41 ms 11.86 ms