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NeRF-like Approaches for 
Light Transport Algorithms



NeRF and Extensions

2

NeRF

KiloNeRF

Plenoxels

Bacon Mip-NeRF Mip-NeRF 360
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Generalization
Scalability



NeRF and Volume Rendering

3

• What about other light transport algorithms?

• Especially, what we learned in CS580?

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall et al., ECCV 2020



NeRF and Light Transport Algos.

• Neural Radiosity (SIGGRAPH ASIA 2021)
• Path Tracing + Radiosity + NeRF

• Real-time Neural Radiance Caching for Path Tracing
(SIGGRAPH 2021)
• Path Tracing + Radiance Caching + NeRF

4



Neural Radiosity
Hadadan et al., SIGGRAPH Asia 2021
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Main Contribution
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Solving the Rendering Equation by 
Radiance-predicting Neural Network 

via Radiosity-like Training



Main Contribution
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Solving the Rendering Equation by 
Radiance-predicting Neural Network 

via Radiosity-like Training



Radiance-predicting Neural Network
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𝑳𝒐 𝒙,𝒘𝒐 = 𝑳𝒆 𝒙,𝒘𝒐 +න
𝛀

𝒇𝒓 𝒙,𝒘𝒊, 𝒘𝒐 𝑳𝒊 𝒙,𝒘𝒊 𝒘𝒊 ⋅ 𝒏 𝒅𝒘𝒊

∼ 𝑳𝒆 𝒙,𝒘𝒐 +
𝟏

𝑵
σ𝒌=𝟏
𝑵

𝒇𝒓 𝒙,𝒘𝒊
𝒌,𝒘𝒐 𝑳𝒊 𝒙,𝒘𝒊

𝒌 𝒘𝒊
𝒌⋅𝒏

𝒑(𝒘𝒊
𝒌)

Solving rendering equation via Monte Carlo Integration

𝜴
𝒙



Radiance-predicting Neural Network
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𝑳𝒐 𝒙,𝒘𝒐 = 𝑳𝒆 𝒙,𝒘𝒐 +න
𝛀

𝒇𝒓 𝒙,𝒘𝒊, 𝒘𝒐 𝑳𝒊 𝒙,𝒘𝒊 𝒘𝒊 ⋅ 𝒏 𝒅𝒘𝒊

∼ 𝑳𝒆 𝒙,𝒘𝒐 + 𝑳𝜽(𝒙,𝒘𝒐)

Solving rendering equation via Radiance-predicting Neural Network 𝑳𝜽

𝜴
𝒙

𝑳𝜽(𝒙,𝒘𝒐)



Radiance-predicting Neural Network

• Generating ground truth is to solve the rendering 
equation → Too much overhead!

• How to train without the ground truth radiance?

10

𝜴
𝒙

𝑳𝜽(𝒙,𝒘𝒐)



• Iteratively updating the radiosity of each polygon
• Jacobi / Gauss-Seidel iteration

Radiosity: Recap

11

𝑅𝑎𝑑𝑖𝑜𝑠𝑖𝑡𝑦𝑖 = 𝑅𝑎𝑑𝑖𝑜𝑠𝑖𝑡𝑦𝑠𝑒𝑙𝑓,𝑖 +

𝑗=1

𝑁

𝑎𝑗→𝑖𝑅𝑎𝑑𝑖𝑜𝑠𝑖𝑡𝑦𝑗

Slide from CS580



• Iteratively updating the radiosity of each polygon
• Jacobi / Gauss-Seidel iteration

• Updating allows to consider further light bounces

Radiosity: Recap

12

Slide from CS580



Neural Radiosity Method

13

𝑅𝑎𝑑𝑖𝑜𝑠𝑖𝑡𝑦𝑖 = 𝑅𝑎𝑑𝑖𝑜𝑠𝑖𝑡𝑦𝑠𝑒𝑙𝑓,𝑖 +

𝑗=1

𝑁

𝑎𝑗→𝑖𝑅𝑎𝑑𝑖𝑜𝑠𝑖𝑡𝑦𝑗

𝐿𝜃 𝑥, 𝜔𝑜 = 𝐿𝑒 𝑥, 𝜔𝑜 +න𝑓 𝑥,𝜔𝑜, 𝜔𝑖 𝐿𝜃 𝑥′ 𝑥, 𝜔𝑖 , −𝜔𝑖 𝑑𝜔𝑖

Slide from CS580



Neural Radiosity Method

14

• Minimize the difference between the directly estimated 
outgoing radiance (LHS) and calculated outgoing radiance 
from estimated incoming radiances(RHS)



Neural Radiosity Method
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• LHS: Outgoing radiance directly estimated by the 
network



Neural Radiosity Method
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• RHS: Outgoing radiance calculated from estimated
incoming radiances
• But we still have a rendering equation to solve…



Neural Radiosity Method

17

• RHS: Outgoing radiance calculated from estimated
incoming radiances
• Use Monte Carlo Integration!

• Estimate the incoming radiance of the sampled 𝜔𝑖,𝑘 , 𝑥𝑘
′ 𝑥, 𝜔𝑖,𝑘

𝑇 𝐿𝜃 𝑥, 𝜔𝑜

=
1

𝑀


𝑘=1

𝑀
𝑓 𝑥, 𝜔𝑜, 𝜔𝑖,𝑘 𝐿𝜃(𝑥𝑘

′ 𝑥, 𝜔𝑖,𝑘 , −𝜔𝑖,𝑘)

𝑝(𝜔𝑖,𝑘)

𝑀~16



Neural Radiosity Method
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𝑅𝑎𝑑𝑖𝑜𝑠𝑖𝑡𝑦𝑖 = 𝑅𝑎𝑑𝑖𝑜𝑠𝑖𝑡𝑦𝑠𝑒𝑙𝑓,𝑖 +

𝑗=1

𝑁

𝑎𝑗→𝑖𝑅𝑎𝑑𝑖𝑜𝑠𝑖𝑡𝑦𝑗

𝑟𝜃 𝑥, 𝜔𝑜 = 𝐿𝜃 𝑥, 𝜔𝑜 − 𝐿𝑒 𝑥, 𝜔𝑜 +
1

𝑀


𝑘=1

𝑀
𝑓 𝑥, 𝜔𝑜, 𝜔𝑖,𝑘 𝐿𝜃(𝑥𝑘

′ 𝑥, 𝜔𝑖,𝑘 , −𝜔𝑖,𝑘)

𝑝(𝜔𝑖,𝑘)

Slide from CS580



Reducing the Residual Norm

19

• Residual norm 𝑟𝜃 𝑥, 𝜔𝑜

• 𝐿𝑜𝑠𝑠 𝜃 = 𝑟𝜃(𝑥, 𝜔𝑜)
2

• 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐿𝑜𝑠𝑠 𝜃 =
𝑟𝜃(𝑥,𝜔𝑜)

𝑠𝑔(𝑚𝜃 𝑥,𝜔𝑜 )+𝜀 2

2

• For a stable training with high dynamic range radiances

• 𝑚𝜃 𝑥, 𝜔𝑜 =
1

2
𝐿𝜃 𝑥, 𝜔𝑜 + 𝐿𝑒 𝑥, 𝜔𝑜 + 𝑇 𝐿𝜃 𝑥, 𝜔𝑜

• 𝑠𝑔: stop gradient

𝑟𝜃 𝑥, 𝜔𝑜

= 𝐿𝜃 𝑥, 𝜔𝑜 − 𝐿𝑒 𝑥, 𝜔𝑜 −
1

𝑀


𝑘=1

𝑀
𝑓 𝑥, 𝜔𝑜, 𝜔𝑖,𝑘 𝐿𝜃 𝑥𝑘

′ 𝑥, 𝜔𝑖,𝑘 , −𝜔𝑖,𝑘

𝑝 𝜔𝑖,𝑘

= 𝐿𝜃 𝑥, 𝜔𝑜 − 𝐿𝑒 𝑥, 𝜔𝑜 − 𝑇{𝐿𝜃}(𝑥, 𝜔𝑜)



Training with Neural Radiosity
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• Now, we do not need to directly solve/approximate the 
rendering equation!



Training with Neural Radiosity

21

• Training takes more time that Path Tracing
• 3~5 minutes per 1000 steps…

• But shows various applications once trained…



Main Contribution
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Solving the Rendering Equation by 
Radiance-predicting Neural Network 

via Radiosity-like Training



Radiance-predicting Neural Network

23

𝑳𝒐 𝒙,𝒘𝒐 = 𝑳𝒆 𝒙,𝒘𝒐 +න
𝛀

𝒇𝒓 𝒙,𝒘𝒊, 𝒘𝒐 𝑳𝒊 𝒙,𝒘𝒊 𝒘𝒊 ⋅ 𝒏 𝒅𝒘𝒊

∼ 𝑳𝒆 𝒙,𝒘𝒐 + 𝑳𝜽(𝒙,𝒘𝒐)

Solving rendering equation via Radiance-predicting Neural Network 𝑳𝜽

𝜴
𝒙

𝑳𝜽(𝒙,𝒘𝒐)



Positional Encoding is not Enough

• Positional encoding like NeRF does not show better 
performance

• Instead, use a multi-resolution feature grid with 
trainable features!
• Similar approach with Plenoxels, but with more scale

24

𝐿𝜃 𝑥, 𝜔𝑜 = 𝑀𝐿𝑃

𝑥
𝛾(𝑥)
𝜔𝑜

,   𝛾 𝑥 =

sin(20𝜋𝑥)

cos(20𝜋𝑥)
⋮

sin(2𝑘−1𝜋𝑥)

cos(2𝑘−1𝜋𝑥)

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall et al., ECCV 2020
Plenoxels: Radiance Fields without Neural Networks, Yu et al., CVPR 2022



Multi-resolution Feature Grid

• Idea & Implementation borrowed from NGLOD
• Neural Geometric Level of Detail, CVPR 2021

• Features of the query point as interpolated feature 
vectors of each level of voxel grids

• Allows better performance with using relatively 
shallow network

25

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces, Takikawa et al., CVPR 2021



Multi-resolution Feature Grid



Results – Rendering
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Results – View Synthesis
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• Trained network represents the entire radiance 
distribution of the scene → Multi-view Synthesis!



29

https://www.youtube.com/watch?v=cwS_Fw4u0rM



Results – Material Support
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• Good quality for various materials
• Note that original radiosity method only supported diffuse effects!



31

https://www.youtube.com/watch?v=cwS_Fw4u0rM



Results – Dynamic Scenes

32

• Apply transfer learning for dynamic scenes instead 
of retraining

Rest Pose

Speak Pose

Walk Pose

𝑳𝜽(𝒙,𝒘𝒐)

Training
Transfer 
learning



Results – Dynamic Scenes
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• Apply transfer learning for dynamic scenes instead 
of retraining



34



Neural Radiosity: Wrap-up

• A radiosity-like training to learn the entire radiance 
distribution of the scene 

• Multi-resolution feature grid for new positional 
encoding

• Applied to multi-view synthesis, rendering dynamic 
scenes via transfer learning

35



Real-time 
Neural Radiance Caching
for Path Tracing
Muller et al. SIGGRAPH 2021

36



Main Contributions

37

Radiance Caching with Neural Radiance Field

Self-training with Fast Adaptation

Other Techniques for Real-time Path Tracing



Main Contributions
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Radiance Caching with Neural Radiance Field

Self-training with Fast Adaptation

Other Techniques for Real-time Path Tracing



Irradiance Caching: Recap

• Biased GI algorithm

• Cache the irradiance of the point

39

Slide from CS580



Irradiance Caching: Recap

40

• Biased GI algorithm

• Cache the irradiance of the point

Slide from CS580



Irradiance Caching: Recap

• Biased GI algorithm

• Cache the irradiance of the point

• Interpolate the irradiance of the query point

41

Slide from CS580



• Adding a directional information for caching

• Use Spherical Harmonics 𝐻𝑙
𝑚 like Plenoxels

• 𝐿𝑖(𝜃, 𝜙) ≈ σ𝑙=0
𝑛−1σ𝑚=−𝑙

𝑙 𝜆𝑙
𝑚𝐻𝑙

𝑚(𝜃, 𝜙)

• Interpolate the coefficients 𝜆𝑙
𝑚

Radiance Caching

42

Radiance Caching for Efficient Global Illumination Computation, Krivanek et al., TVCG 2005
Plenoxels: Radiance Fields without Neural Networks, Yu et al., CVPR 2022



Neural Radiance Cache

43

𝑳𝒐 𝒙,𝒘𝒐 = 𝑳𝒆 𝒙,𝒘𝒐 +න
𝛀

𝒇𝒓 𝒙,𝒘𝒊, 𝒘𝒐 𝑳𝒊 𝒙,𝒘𝒊 𝒘𝒊 ⋅ 𝒏 𝒅𝒘𝒊

∼ 𝑳𝒆 𝒙,𝒘𝒐 + 𝑳𝜽(𝒙,𝒘𝒐)

Solving rendering equation via Radiance-predicting Neural Network 𝑳𝜽

𝜴
𝒙

𝑳𝜽(𝒙,𝒘𝒐)



Neural Radiance Cache

44

𝑳𝒐 𝒙,𝒘𝒐 = 𝑳𝒆 𝒙,𝒘𝒐 +න
𝛀

𝒇𝒓 𝒙,𝒘𝒊, 𝒘𝒐 𝑳𝒊 𝒙,𝒘𝒊 𝒘𝒊 ⋅ 𝒏 𝒅𝒘𝒊

∼ 𝑳𝒆 𝒙,𝒘𝒐 + 𝑳𝜽(𝒙,𝒘𝒐)

Train the neural network → Cache, Estimate the radiance →  Interpolate

𝜴
𝒙

𝑳𝜽(𝒙,𝒘𝒐)



Neural Radiance Cache

45

Inputs for Neural Radiance Cache

Radiance 𝑓𝑟𝑒𝑞 𝑥 =

sin(20𝜋𝑥)

cos(20𝜋𝑥)
⋮

sin(2𝑘−1𝜋𝑥)

cos(2𝑘−1𝜋𝑥)

Positional Encoding from NeRF

𝑜𝑏 𝑥 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥,
1

𝑘
)

One-blob Encoding from 
Neural Importance Sampling

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall et al., ECCV 2020
Neural Importance Sampling, Muller et al., SIGGRAPH 2019



Rendering with 
Neural Radiance Caching
• Trace a short rendering path (𝑥0𝑥1𝑥2) where we 

used the cached(estimated) radiance in vertex 𝑥2
𝑳𝜽(𝒙𝟐, 𝒘𝒐)
• When do we terminate?

46

𝑳𝜽(𝒙𝟐, 𝒘2)



Rendering with 
Neural Radiance Caching
• Terminate when the area spread 𝒂(𝒙𝟏…𝒙𝒏) becomes large 

enough to blur the inaccuracy in trained cache 𝒂𝟎
• 𝑎 𝑥1…𝑥𝑛 > 𝑐 ∙ 𝑎0

• 𝑎0 =
𝑥0−𝑥1

2

4𝜋𝑐𝑜𝑠𝜃1
, 𝑎 𝑥1…𝑥𝑛 = σ𝑖=2

𝑛 𝑥0−𝑥1
2

𝑝 𝜔𝑖 𝑥𝑖−1, 𝜔 |𝑐𝑜𝑠𝜃𝑖|

2

47

A Custom Designed Density Estimation Method for Light Transport, Bekaert et al., Techinical Report 2003



Rendering with 
Neural Radiance Caching
• Heuristic termination helps to avoid using poorly cached 

radiances in the primary hit vertex

48

A Custom Designed Density Estimation Method for Light Transport, Bekaert et al., Techinical Report 2003



Rendering with 
Neural Radiance Caching
• Caculate the radiance using the estimated radiance

• 𝐿 𝑥1, 𝜔1 = 𝐿𝑒 𝑥2, 𝜔2 +
𝐿𝜃 𝑥2,𝜔2 𝑓 𝑥1,𝑤2,𝑤1 cos(𝜔1∙𝑛1)

𝑝(−𝜔2)

49

𝝎𝟐

𝝎𝟏

How do we train?
𝑳𝜽(𝒙𝟐, 𝒘2)



Main Contributions

50

Radiance Caching with Neural Radiance Field

Self-training with Fast Adaptation

Other Techniques for Real-time Path Tracing



Self-training with Fast Adaptation

• Trace a short rendering path (𝑦0𝑦1𝑦2)

• Estimate the radiance of 𝑦2 and calculate the 
radiance the sample

51



Self-training with Fast Adaptation

• Extend the rendering path with few vertices 
(⋯𝑦2𝑦3𝑦4)

• We use the same light sample for rendering & 
training!

52



Self-training with Fast Adaptation

• Estimate the radiance in 𝑦4: 𝑳𝜽(𝒚𝟒, 𝝎𝟒)

• Calculate the radiances on preceding vertices using 
the estimated radiance above
• 𝑳𝟏, 𝑳𝟐, 𝑳𝟑

53

𝑳𝜽(𝒚𝟒, 𝝎𝟒)

𝑳𝟑

𝑳𝟐

𝑳𝟏



Self-training with Fast Adaptation

• Minimize the loss between the calculated radiances
and the estimated radiances of the preceding 
vertices

• 𝐿𝑜𝑠𝑠 = 𝑟𝑒𝑙𝐿2 𝑳𝟏, 𝑳𝜽 𝒚𝟏, 𝝎𝟏 + 𝑟𝑒𝑙𝐿2 𝑳𝟐, 𝑳𝜽 𝒚𝟐, 𝝎𝟐 + 𝑟𝑒𝑙𝐿2 𝑳𝟑, 𝑳𝜽 𝒚𝟑, 𝝎𝟑

54

𝑳𝜽(𝒚𝟒, 𝝎𝟒)

𝑳𝟑

𝑳𝟐

𝑳𝟏



Self-training with Fast Adaptation

• No ground truth needed → Self-training!
• Similar to Neural Radiosity

• High learning rate & Multiple gradient descent steps per 
frame with random subset of ray batches → Fast Adaptation!
• One frame with 1spp, FHD → Batch size 212

• Iteratively done for each frames

55



Limitations of Self-training

• What if the training path hits the surface never reached?
• Results in unstable training…

• What if the extended vertices are close together?
• Cannot complete cover the global illumination effect

56



Limitations of Self-training

• For balancing two issues, extend every Nth sample which is 
terminated by Russian roulette.
• Can construct more unbiased training paths

57



Main Contributions

58

Radiance Caching with Neural Radiance Field

Self-training with Fast Adaptation

Other Techniques for Real-time Path Tracing



Temporal Stability via EMA
(Exponential Moving Average)

• Aggressive fast adaptation strategy might lead to 
overfitting, creating temporal artifacts like flickering

• ഥ𝑊𝑡 =
1−𝛼

𝜂𝑡
∙ 𝑊𝑡 + 𝛼 ∙ 𝜂𝑡−1 ∙ ഥ𝑊𝑡−1, 𝜂𝑡 = 1 − 𝛼𝑡

• 𝛼 = 0.99

60



Fully-Fused Network

61

• Reducing memory bottleneck highly increases training & 
inference speed

https://github.com/NVlabs/tiny-cuda-nn

https://github.com/NVlabs/tiny-cuda-nn


Efficient encoding for 
faster gradient computations
• Approximate the encoding functions into 

polynomial functions for faster gradient 
computations

• Buys 0.25ms per frame (1spp)

62



Results – 1spp Video

63

Spatiotemporal Reservoir Resampling for Real-time Ray Tracing with Dynamic Direct Lighting, Bitterli et al., SIGGRAPH 2020



Results – 1spp Video

64

Spatiotemporal Reservoir Resampling for Real-time Ray Tracing with Dynamic Direct Lighting, Bitterli et al., SIGGRAPH 2020



Results – With Image Denoiser

65

Spatiotemporal Reservoir Resampling for Real-time Ray Tracing with Dynamic Direct Lighting, Bitterli et al., SIGGRAPH 2020
Neural Temporal Adaptive Sampling and Denoising, Hasselgren et al., Computer Graphics Forum 2020



Results – Fast Adaptation

66



Neural Radiance Cache: Wrap-up

• Introducing a radiance caching techinique by 
training a radiance-caching neural network

• Self-training with Fast Adaptation to achieve real-
time for rendering & training

• Vast number of techniques to achieve real time

67



Appendices
Neural Radiosity

69



• Gather radiances estimated on 
the first bounce

Rendering with Neural Radiosity

70

• Gather radiances calculated with 
estimated incoming radiances 
into the first bounce



Rendering with Neural Radiosity

71

• Rendering with RHS shows better quality, but has 
more overhead due to the calculation



Multi-resolution Feature Grid

• Idea & Implementation borrowed by NGLOD
• Neural Geometry Level of Details, CVPR 2021

• Originally for better representation of SDF

72

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces, Takikawa et al., CVPR 2021



Multi-resolution Feature Grid

• Each level of voxel grids have trainable vectors

• Voxel Octree to implement multi-resolution voxel 
grids

73

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces, Takikawa et al., CVPR 2021
Efficient Sparse Voxel Octrees, Laine and Karras, I3D 2010



Multi-resolution Feature Grid

• Features of the query point as interpolated feature 
vectors of each level of voxel grids

• Allows better performance with using relatively 
shallow network

74

𝐿𝜃 𝑥, 𝜔𝑜 = 𝑀𝐿𝑃

𝑥
𝐺(𝑥)
𝜔𝑜

,   G 𝑥 =
1

𝑛
σ0
𝑛−1 𝑡𝑟𝑖𝑙𝑖𝑛𝑒𝑎𝑟(𝑥, 𝑉𝑖 𝑥 )

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces, Takikawa et al., CVPR 2021



Appendices
Real-time Neural Radiance Caching for Path Tracing

75



One-blob Encoding

• Smoothes the one-hot vectors to reduce loss of 
information

76

Neural Importance Sampling, Muller et al., SIGGRAPH 2019



Temporal Stability via EMA

• Aggressive self-training strategy might lead to 
overfitting, creating temporal artifacts like flickering

• To reduce such phenomenon, we average the 
network weights via EMA

• ഥ𝑊𝑡 =
1−𝛼

𝜂𝑡
∙ 𝑊𝑡 + 𝛼 ∙ 𝜂𝑡−1 ∙ ഥ𝑊𝑡−1, 𝜂𝑡 = 1 − 𝛼𝑡

• 𝛼 = 0.99

77



Temporal Stability via EMA

• Aggressive self-training strategy might lead to 
overfitting, creating temporal artifacts like flickering

• ഥ𝑊𝑡 =
1−𝛼

𝜂𝑡
∙ 𝑊𝑡 + 𝛼 ∙ 𝜂𝑡−1 ∙ ഥ𝑊𝑡−1, 𝜂𝑡 = 1 − 𝛼𝑡

• 𝛼 = 0.99
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Fully-Fused Network

• A new GPU kernel that highly reduces the memory 
bottleneck between high-level memory(VRAM) and on-chip 
memory (low-level cahces, registers, etc…)
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Fully-Fused Network

• Divide the large batch (212 for FHD 1920x1080) into small 
minibatches (128)
• Might differ by capacity of on-chip memory of GPU

• Each minibatch is used for training in each thread parallely
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Fully-Fused Network

81

• The memory consumption of the matrix multiplication in 
each thread are set to perfectly fit the low-level memory

• Specifically, multiplication of each row & column

• For GTX 3090, minibatch of 128 and hidden layer of 64 fully utilizes its register



Fully-Fused Network
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• Reducing memory bottleneck highly increases training & 
inference speed

Comparison with XLA-enabled TensorFlow



Fully-Fused Network
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• Reducing memory bottleneck highly increases training & 
inference speed

• Fast image learning with high resolution (3250x4333)

0 ms 4.2 ms 420 ms GT

https://github.com/NVlabs/tiny-cuda-nn

https://github.com/NVlabs/tiny-cuda-nn


Reflectance Factorization

• Helps the network to focus on details by light 
transport rather than texture details
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Results – Numerical Results
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Spatiotemporal Reservoir Resampling for Real-time Ray Tracing with Dynamic Direct Lighting, Bitterli et al., SIGGRAPH 2020



Results – Volume Rendering
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Results – Rendering Cost

87

Dynamic Diffuse Global Illumination with Ray-traced Irradiance Fields, Majercik et al., JCGT 2019
Spatiotemporal Reservoir Resampling for Real-time Ray Tracing with Dynamic Direct Lighing, Bitterli et al., SIGGRAPH 2020

Total

12.96 ms
13.98 ms
13.66 ms

13.75 ms
15.04 ms
14.45 ms

18.06 ms
15.17 ms
15.09 ms

8.32 ms
7.19 ms
8.78 ms

6.73 ms
6.97 ms
8.02 ms

13.89 ms
10.09 ms
11.17 ms

12.29 ms
11.41 ms
11.86 ms


