NeRF-like Approaches for
Light Transport Algorithms

2022-05-02
Kyubeom Han

KAIST

NeRF and Extensions

Neural
Network Colo

Output Acceleration

r + Density

5D Input
Position + Direction

(x22,0,6)— Ul][l"’ (RGBa) Ray 1
-

/).' F Ray 2

Training

NeRF

NeRF KiloNeRF

56s 0.02s

KiloNeRF

T 832828828 spherca
ove
204 200 s0¢ Hamonks

./ i -

@

.= % .
-

a) Sparse Voxel Grid

Plenoxels /

Generalization
Scalability

Supervision

‘ ': Ray cone

Network Outputs footprint

th I.Ya

I Output

Layers 1 1
Z) Z1 z2 z3
Linear o °
Layers oo
Quadrilinearly
Input i
faore interpolated
samples

IN-3(%)

93(x)

o(x) n(x) g2(x)

low frequency encoding

Sparse MipMap pyramid

Voxel-Based cone of pre-integrated values

Mip-NeRF

high frequency encoding

Bacon

-~ Camera
Euclidean Gaussians
Contracted Domain
Unaffected Domain
—> Contracted Gaussians

Mip-NeRF 360

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall et al., ECCV 2020

NeRF and Volume Rendering

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
(x,3,2,60,0) > — (RGBo)
f' I][I[I = i N 1
Rdvz,‘%yc/@)" ' 4 M-t
Y ” g: . / 2
Ray 2 /\ 2
-g.t.
2
Ray Distance
(b) (c) (d)

 What about other light transport algorithms?
* Especially, what we learned in CS580?

NeRF and Light Transport Algos.

* Neural Radiosity (SIGGRAPH ASIA 2021)
e Path Tracing + Radiosity + NeRF

* Real-time Neural Radiance Caching for Path Tracing
(SIGGRAPH 2021)

e Path Tracing + Radiance Caching + NeRF

Neural Radiosity

Hadadan et al., SIGGRAPH Asia 2021

Main Contribution

Solving the Rendering Equation by
Radiance-predicting Neural Network
via Radiosity-like Training

Main Contribution

Radiosity-like Training

Radiance-predicting Neural Network

L,(x, W) = Ly(x, W) + f £, e, Wi, WLy e, W) W, - 7) AW,
Q
— 1 fr xrw—flw—o) Li X,W—f W—fﬁ
~ Le(x’ WO) _I_ NZIIX:]_ ()(Lk)))()
| ALE

Solving rendering equation via Monte Carlo Integration

Radiance-predicting Neural Network

L,(x, W) = Ly(x, W) + f £, e, Wi, WLy e, W) W, - 7) AW,
Q

~ Le(x, WJ) + Lg(x, WJ)

Solving rendering equation via Radiance-predicting Neural Network Lg

Radiance-predicting Neural Network

* Generating ground truth is to solve the rendering
equation - Too much overhead!

* How to train without the ground truth radiance?

Radiosity: Recap

* Iteratively updating the radiosity of each polygon
* Jacobi / Gauss-Seidel iteration

Self-emitted Reflected
radiosity radiosity

Radiosity
N
Radiosity; = Radiosityser; +) a;-;Radiosity;

]_1 11

Slide from CS580
Radiosity: Recap
* |teratively updating the radiosity of each polygon

e Jacobi / Gauss-Seidel iteration

e Updating allows to consider further light bounces

1st Pass 2nd Pass 3rd Pass

12

Slide from CS580

Neural Radiosity Method

Self-emitted Reflected
radiosity radiosity

Radiosity

N
Radiosity; = Radiosityger; + 2 a;;Radiosity;

/S R

Lo (%, wq) = Lo(x,0p) + f £ (X, wg)L (' (%, 07), —w0p)dw;

13

Neural Radiosity Method

* Minimize the difference between the directly estimated
outgoing radiance (LHS) and calculated outgoing radiance
from estimated incoming radiances(RHS)

E(x, w,)

N\

w

I
I
I
O '
1

N Query (b0, '\‘\

e o -

L(0) = ” Ly (x, w,) wem (E(x,0,) +J f(x,wo,wi).lvae (x, wi),-wi).dwil)”%
H{_/ B ~ .

Left Hand Side(LHS) Right Hand Side(RHS)

14

Neural Radiosity Method

* LHS: Outgoing radiance directly estimated by the
network

(1)0
\ Queéryi(x, w,)
“ D

@.

£(0) = || (g o) —

W_/

Left Hand Side(LHS)

Neural Radiosity Method

* RHS: Outgoing radiance calculated from estimated
incoming radiances

* But we still have a rendering equation to solve...

(B @)+ [£x0g, 00 Lo (6 (% 60) -0).dot

- J
Y

Right Hand Side(RHS)

2
2

Neural Radiosity Method

* RHS: Outgoing radiance calculated from estimated
incoming radiances

* Use Monte Carlo Integration!
* Estimate the incoming radiance of the sampled w; ., x;(x, w; ;)

| x'(x, w;)
\ T{LQ}(-X) wO)

Query (¥, =) li f(X, Wo, wi,k)Le (Xk (X; (‘)i,k); —Wik)
M
k=1

p(wi)

(E(x, w,) +f f(x, wy,w;) . Ly (X' (x, ®;) , —w;). dmil)

- J
Y

Right Hand Side(RHS)

2
2

M~16

Slide from CS580

Neural Radiosity Method

Self-emitted Reflected
radiosity radiosity

Radiosity

N
Radiosity; = Radiosityger; + 2 a;;Radiosity;

=

M
1 X, Wy, W; i) Lo (xr (X, W; i), —w;
1o (X, W) = Lg(x, wy) — Lo (X, wp) +— E f(2 l’k) o(k(l’k) i)

18

Reducing the Residual Norm

 Residual norm ry(x, w,)

1o (x, w,) . |
= Lo (x, W) — Lo (x, w,) — %;f(x' e wi’k)L:((;fS) 1)
= Lg(x, wp) — Le(x, wo) — T{Lg}(x, o)
* Loss(8) = ||lrg(x, wo)|I?
2
* Relative Loss(0) = p (TZZ((J;:‘;)))% :

* For a stable training with high dynamic range radiances

1
* mo(x, w,) = > (LB (x,w,) + Lo (x, w,) + T{Lg}(x, wo))
* sg: stop gradient

Training with Neural Radiosity

* Now, we do not need to directly solve/approximate the
rendering equation!

ALGORITHM 1: Minibatch stochastic gradient descent, learning

rate 1.

initialize network parameters 0;

while not converged do
sample a set of surface points {x;|j =1... N} and outgoing

directions {@o, ;|j=1...N};

for each (xj, @, j), sample a set of incident directions
[wf?j,k |.|EC =1.. .M};

use the samples to evaluate the Monte Carlo estimate of
Vo L(8) using Equations 6 and 8;

0=0-nVeL(0);

end
return 6;

20

LHS

RHS

R Residual

Training with Neural Radiosity

* Training takes more time that Path Tracing
* 3~5 minutes per 1000 steps...

* But shows various applications once trained...

Step: 0 50 150 200 1200 2400 21600 46800

21

Main Contribution

Radiance-predicting Neural Network

Radiance-predicting Neural Network

L,(x, W) = Ly(x, W) + f £, e, Wi, WLy e, W) W, - 7) AW,
Q

~ Le(x, WJ) + Lg(x, WJ)

Solving rendering equation via Radiance-predicting Neural Network Lg

— A
% Z Lo(x,w,) <@~
Iy A

\/

23

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall et al., ECCV 2020
Plenoxels: Radiance Fields without Neural Networks, Yu et al., CVPR 2022

Positional Encoding is not Enough

* Positional encoding like NeRF does not show better
performance sin(20m0)

X cos(2%mx)

Lo(x,w,) = MLP (V(x)>, v(x) = :
Wo sin(2%1mx)
cos(2* 1mx)

* Instead, use a multi-resolution feature grid with
trainable features!

e Similar approach with Plenoxels, but with more scale

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces, Takikawa et al., CVPR 2021

Multi-resolution Feature Grid

* |dea & Implementation borrowed from NGLOD
 Neural Geometric Level of Detail, CVPR 2021

* Features of the query point as interpolated feature
vectors of each level of voxel grids

* Allows better performance with using relatively
shallow network

Query point Octree feature volume Voxel feature retrieval Trilinear interpolation Summed Surface Predicted
= features extractor distance

+
| 2(x) @) ar
a /

Multi-resolution Feature Grid

= Feature Vectors == Positional Encoding Mo Encoding
LHS - No Encoding MAPE: 0.191 spp: 16
ﬁ
(=]
-
=
Y =
LL—L E
LHS - Positional Encoding MAPE: 0.105 spp: 16 =
=
ki
& .
LHS - Feature Vectors MAPE: 0.072 spp: 16 _
’ S000 10000 15000 20000
{ Training step

Ground Truth = spp: 8192

Results — Rendering

RHS Ground Truth Relative Residual RHS/Truth Absolute Error

Cornell box

Dining Room

Results — View Synthesis

* Trained network represents the entire radiance
distribution of the scene - Multi-view Synthesis!

Multiple views of LHS) Ours GT

MAPE: 0.054

MAPE: 0.058

MAPE: 0. 066

28

MAPE: 0.058

https://www.youtube.com/watch?v=cwS_Fw4uOrM

Ground Truth Left-hand Side

Reference simulation

\

Results — Material Support

* Good quality for various materials
* Note that original radiosity method only supported diffuse effects!

23883

MAPE: 0.020

30

Rough Plastic Textured Rough Plastic Rough Copper

https://www.youtube.com/watch?v=cwS_Fw4uOrM

Ground Truth Left-hand Side

\Reference simulation

Mil

Source: [Hadadan et aI._{'2{6'21]

Results — Dynamic Scenes

* Apply transfer learning for dynamic scenes instead
of retraining

Transfer
learning

Speak Pose

Rest Pose

32

Walk Pose

Results — Dynamic Scenes

* Apply transfer learning for dynamic scenes instead
of retraining

I Fest Pose Walk Pose I Speak Pose
2.0
1.5
3
-t
& .
2 1.0
=
0.5 A\
_________ - — e il
3
0.0

1000 2000 3000 4000 5000 6000 7000

Training Step

33

MAPE: 0.257 0.044 0.025 0.014
MAPE: 0.060 0.020 0.029 0.016
MAPE: 0.088 0.021 0.027 0.016

LHS (initial) RHS (initial) Residual (initial) LHS (finetuned) RHS (finetuned) Residual (finetuned) Ground Truth

Neural Radiosity: Wrap-up

* A radiosity-like training to learn the entire radiance
distribution of the scene

* Multi-resolution feature grid for new positional
encoding

e Applied to multi-view synthesis, rendering dynamic
scenes via transfer learning

35

Real-time
Neural Radiance Caching
for Path Tracing

Muller et al. SIGGRAPH 2021

Main Contributions

Radiance Caching with Neural Radiance Field

Self-training with Fast Adaptation

Other Techniques for Real-time Path Tracing

Main Contributions

Radiance Caching with Neural Radiance Field

38

Slide from CS580

Irradiance Caching: Recap

* Biased Gl algorithm
* Cache the irradiance of the point

Slide from CS580

Irradiance Caching: Recap

* Biased Gl algorithm
* Cache the irradiance of the point

Slide from CS580

Irradiance Caching: Recap

* Biased Gl algorithm
* Cache the irradiance of the point
* Interpolate the irradiance of the query point

Radiance Caching for Efficient Global Illumination Computation, Krivanek et al., TVCG 2005
Plenoxels: Radiance Fields without Neural Networks, Yu et al., CVPR 2022

Radiance Caching

* Adding a directional information for caching

* Use Spherical Harmonics H]" like Plenoxels
* Li(6,9) = X155 Ln=—t AT HI™(O, ¢)

* Interpolate the coefficients A;"

Neural Radiance Cache

L,(x, W) = Ly(x, W) + f £, e, Wi, WLy e, W) W, - 7) AW,
Q

~ Le(xz WJ) T Le(x» WJ)

Solving rendering equation via Radiance-predicting Neural Network Lg

A 4
>
vA

% Zz Lo(x,W,) \ <:

43

Neural Radiance Cache

L,(x, W) = Ly(x, W) + f £, e, Wi, WLy e, W) W, - 7) AW,
Q

~ Le (x: WJ) T LB (x, WJ)

Train the neural network - Cache, the radiance -

vA ¢
- >
ATA

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall et al., ECCV 2020
Neural Importance Sampling, Muller et al., SIGGRAPH 2019

Neural Radiance Cache

C@ sin(2%mx)
\ cos(2%7x)
Radiance freq(x) = :

sin(2*1mx)

Parameter Symbol with Encoding k—1
cos(2* " *mx)
Position x € R3 freq(x) € R3x12
Scattered dir. w e S? ob(sph(w)) € R¥*4 Positional Encoding from NeRF
Surface normal n(x) € S? ob(sph(n(x))) € R?*4
Surface roughness r(x,w) € R ob(l — e""(x’“’)) e R?
Diffuse reflectance a(x, w) € R3 id(a(x, w)) € R3

Specular reflectance B(x, w) € R3 id(f(x, w)) € R3

ob(x) = Gaussian(x,—)
Inputs for Neural Radiance Cache k
One-blob Encoding from

Neural Importance Sampling

45

Rendering with
Neural Radiance Caching

* Trace a short rendering path (xyx;x,) where we
used the cached(estimated) radiance in vertex x,
Lg(Xz, Wo)

* When do we terminate?

» Prﬁdictt‘d '
’ (cached) — £
X0 / Yo radiance —

/ /
U/ -

X1 Y1

46

A Custom Designed Density Estimation Method for Light Transport, Bekaert et al., Techinical Report 2003

Rendering with
Neural Radiance Caching

* Terminate when the area spread a(x4 ... x,,) becomes large
enough to blur the inaccuracy in trained cache a,

e a(xqy..xy) >c-ag

2
2 2
Xo—X Xo—X
* Qo = M,a(?ﬁ wXp) = | Uiz o]
411c0S04 =2 \p(wi|x;_q1, w)|cosb;]

A Custom Designed Density Estimation Method for Light Transport, Bekaert et al., Techinical Report 2003

Rendering with
Neural Radiance Caching

* Heuristic termination helps to avoid using poorly cached
radiances in the primary hit vertex

Reference

ZS at heuristic hit

L at 1%t non-specular hit

ZERO DAY

BisTrO

Rendering with
Neural Radiance Caching

e Caculate the radiance using the estimated radiance

L0, 1) = Lo(ry, @) + “ezesfCamamcostorn)
p(-w2)

/ Lo(x2,W3)
| How oo we train?
Predicted X2 @
(cached)
()

f_f_.-"'_"a

radiance -

49

Main Contributions

Self-training with Fast Adaptation

50

Self-training with Fast Adaptation

* Trace a short rendering path (yyv1V2)

* Estimate the radiance of y, and calculate the
radiance the sample

o Predicted
. (cached) ~ _
X0 / Yo radiance —

Training W%

radiance - * y4

~ Shadow ray

Self-training with Fast Adaptation

* Extend the rendering path with few vertices

(“** V2YV3Y4)

* We use the same light sample for rendering &
training!

Predicted X2 Y2
(cached)

radiance

\‘.g&
. N
Training 3
radiance .
;"
— Shadow ray -

52

Self-training with Fast Adaptation

* Estimate the radiance in y,: Lg(y4, @W4)

 Calculate the radiances on preceding vertices using
the estimated radiance above

¢ Ll, Lz, L3
Lo(ys w4)
Predicted X2 Y2
(cached) N BY C@
radiance — “f?@ ,
i“g}m
Training W%
radiance - - y4
/ xxl Ni

~ Shadow ray

Self-training with Fast Adaptation

* Minimize the loss between the calculated radiances
and the estimated radiances of the preceding
vertices

e Loss = relLZ(Ll, Lg(yl, (1)1)) ~+ T'elLZ(Lz, Le(}’z, (1)2)) + T'elLZ(Lg, Le(yg, (1)3))

Lo(y4, w4)
Predicted X2 Y2
(cached) BY C@
radiance — L “&5,
2 #“Fp
*
Training “%«& V4
radiance - -
/ ~\Ni

 Shadow ray

Self-training with Fast Adaptation

* No ground truth needed - Self-training!
e Similar to Neural Radiosity

* High learning rate & Multiple gradient descent steps per
frame with random subset of ray batches - Fast Adaptation!

* One frame with 1spp, FHD - Batch size 212
* lteratively done for each frames

Limitations of Self-training

 What if the training path hits the surface never reached?
e Results in unstable training...

 What if the extended vertices are close together?
e Cannot complete cover the global illumination effect

Predicted }f.f Y2
(cached)
radiance

Training %
radiance

~ Shadow ray

Limitations of Self-training

* For balancing two issues, extend every N sample which is

terminated by Russian roulette.
e Can construct more unbiased training paths

Predicted X2 Y2
(cached)
radiance

p:

~ Shadow ray

pXG
. N
Training %
. \
radiance -

Main Contributions

Other Techniques for Real-time Path Tracing

58

Temporal Stability via EMA

(Exponential Moving Average)

» Aggressive fast adaptation strategy might lead to
overfitting, creating temporal artifacts like flickering

— 1-a — _ t
'Wtz_nt Weta-n Wepne=1-«a
EMA weight ¢ = 0.00 EMA weight @ =0.90 EMA weight o = 0.99

ZERO DAY

https://github.com/NVlabs/tiny-cuda-nn

Fully-Fused Network

* Reducing memory bottleneck highly increases training &

inference speed

1e8 Training throughput

2.0 —

1.5 =

Elements per second

Batch size

1e9

Inference throughput

1.0 —

0.8 -

== Fully fused
= TensorFlow

Batch size
61

https://github.com/NVlabs/tiny-cuda-nn

Efficient encoding for
faster gradient computations

* Approximate the encoding functions into
polynomial functions for faster gradient
computations

* Buys 0.25ms per frame (1spp)

Kernels for one-blob encoding Wauves for frequency encoding
1.0 py : 1.0 :
-\ = (3aussian — Sine
0.8 = Quartic Triangle
0.5 —
0.6 — \
0.04° : '. N .
0.4 —
0.2 - / | | \ 0.5 7
0.0 - -1.0 -
I I I T I I I T I
-2 -1 0 1 2

quartic(x) : }—5(1 — x%)? tri(x) :==2|xmod 2 -1 -1

62

Spatiotemporal Reservoir Resampling for Real-time Ray Tracing with Dynamic Direct Lighting, Bitterli et al., SIGGRAPH 2020

Results — 1spp Video

Path tracing

Spatiotemporal Reservoir Resampling for Real-time Ray Tracing with Dynamic Direct Lighting, Bitterli et al., SIGGRAPH 2020

Results — 1spp Video

~ Path tracing . -"4

Spatiotemporal Reservoir Resampling for Real-time Ray Tracing with Dynamic Direct Lighting, Bitterli et al., SIGGRAPH 2020
Neural Temporal Adaptive Sampling and Denoising, Hasselgren et al., Computer Graphics Forum 2020

Results — With Image Denoiser

Results — Fast Adaptation

Neural Radiance Cache: Wrap-up

* Introducing a radiance caching techinique by
training a radiance-caching neural network

* Self-training with Fast Adaptation to achieve real-
time for rendering & training

* VVast number of techniques to achieve real time

67

Appendices

Neural Radiosity

Rendering with Neural Radiosity

e Gather radiances estimated on ¢ Gather radiances calculated with
the first bounce estimated incoming radiances
into the first bounce

W 0

\ QUeryI(x.w,)
—)

S
L(0) === H Lo (X, ;) (E(x,w,,)+ff(x, Wy , ;) - Ly (X' (X, ;) , —;). dori)
~—— N\ ~ J

Left Hand Side(LHS) Right Hand Side(RHS)

2
2

70

Rendering with Neural Radiosity

* Rendering with RHS shows better quality, but has
more overhead due to the calculation

= | HE o= R

| -Fl"'-"'\.-'l 'I-'ll r'. T l'ﬂl o
o WISV IR A A A

Wl II|||||'-_.-'I
-.-".__. U N III'u'

nh:dn'f'uﬂ| Jﬁ“r:%"u"' Nﬁyl’ﬁulrul \ Y

Mean Squared Error

Training step

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces, Takikawa et al., CVPR 2021

Multi-resolution Feature Grid

* Idea & Implementation borrowed by NGLOD
* Neural Geometry Level of Details, CVPR 2021

* Originally for better representation of SDF

Query point Octree feature volume Voxel feature retrieval Trilinear interpolation Summed Surface Predicted
features extractor distance

+
| 2(x) @) ar
a /

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces, Takikawa et al., CVPR 2021
Efficient Sparse Voxel Octrees, Laine and Karras, 13D 2010

Multi-resolution Feature Grid

* Each level of voxel grids have trainable vectors

* Voxel Octree to implement multi-resolution voxel
grids

D T ERE>

<,\ g\\ a4
Level 1 Level 2 Level 3 Result
[Query point Octree feature volumm Voxel feature retrieval Trilinear interpolation Summed Surface Predicted
= u| o0—0 features extractor distance
= Vi Va g
o0—a —1
x© x© Vi o—a + —~
g 1 z(x) dr,
M B—a + /
o) Z — X fo, .
Vi
k / (4 a

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces, Takikawa et al., CVPR 2021

Multi-resolution Feature Grid

* Features of the query point as interpolated feature
vectors of each level of voxel grids

* Allows better performance with using relatively
shallow network

Query point

M

X
Lo(x,w,) = MLP| G(x) |, G(x) = %Z’(}_l trilinear (x, V;[x])
wO
(Voxelfeatureretrieval Trilinear interpolation Summed Surfarh
o ob—0a features extractor
Vi Vs 5
—a [T
Vi o—o +
v — 7(x) @
ob—a + V.
() Z X for

Octree feature volume

Predicted
distance

o~

dy,

Appendices

Real-time Neural Radiance Caching for Path Tracing

Neural Importance Sampling, Muller et al., SIGGRAPH 2019

One-blob Encoding

* Smoothes the one-hot vectors to reduce loss of

information
I xA One-blob encoding
optional =
extra {
features
| | — 0 S S 0 0
| [|:|| :
£ ReLU
= t t
E I——'_l‘_@_| : concatrtenarte
9| !
: |

Affine (L=16) Piecewise-linear (L=2) Piecewise-quadratic (L=2)

scalar encoding one-blob encoding scalar encoding one-blob encoding scalar encoding one-blob encoding Reference

Temporal Stability via EMA

e Aggressive self-training strategy might lead to
overfitting, creating temporal artifacts like flickering

* To reduce such phenomenon, we average the
network weights via EMA

* W = e Wi +a g W =1-0at

= 0.99

Temporal Stability via EMA

» Aggressive self-training strategy might lead to
overfitting, creating temporal artifacts like flickering

— 1-a — _ t
'Wtz_nt Weta-n Wepne=1-«a
EMA weight ¢ = 0.00 EMA weight @ =0.90 EMA weight o = 0.99

ZERO DAY

Fully-Fused Network

* A new GPU kernel that highly reduces the memory
bottleneck between high-level memory(VRAM) and on-chip
memory (low-level cahces, registers, etc...)

Input
) ¢ Batch size N.
i 1T Min |—_L| * | . | . H;
Ol T Myiggen [
=999
l 1T Mhidden [|]
Ol 1T Mpigen O %l (| Ol] O
@XL o . @ @ @ MY [N
DI I%‘leli.lldt'll Di D’i‘ D'il Dlil Wri H;-'—l
[J 1 Mo | J [] | |
Du‘t+put w I;I v v v H:+l = Wi - H;

(a) Batched neural network evaluation (b) Distribution of a batch over thread blocks (c) Per-thread-block matrix multiplication

Fully-Fused Network

» Divide the large batch (2% for FHD 1920x1080) into small
minibatches (128)

* Might differ by capacity of on-chip memory of GPU
* Each minibatch is used for training in each thread parallely

e Divide the large batch (212 for FHD 19:
minibatches (128)

= Might differ by capacity of on-chip memo
= Each minibatch is used for training in €

Fully-Fused Network

* The memory consumption of the matrix multiplication in
each thread are set to perfectly fit the low-level memory

» Specifically, multiplication of each row & column
* For GTX 3090, minibatch of 128 and hidden layer of 64 fully utilizes its register

#J-Jr
||||

O

ulbs ®ﬂﬂ<®ﬂﬂ*

O

9 CC
© © 0 [y b
SN s

Wi H!

i+1

|] Ol] | Ol |
+ + + H! = W; - H;

i+1

O
v

(b) Distribution of a batch over thread blocks (c) Per-thread-block matrix multiplication

Fully-Fused Network

* Reducing memory bottleneck highly increases training &
inference speed

1e8 Training throughput 1e9 Inference throughput

2.0 =
1.0 =

== Fully fused

1.5 = -
0.8 = TensorFlow

Elements per second

Batch size Batch size
Comparison with XLA-enabled TensorFlow 82

https://github.com/NVlabs/tiny-cuda-nn

Fully-Fused Network

* Reducing memory bottleneck highly increases training &
inference speed

* Fast image learning with high resolution (3250x4333)

0O ms 4.2 ms 420 ms

https://github.com/NVlabs/tiny-cuda-nn

Reflectance Factorization

* Helps the network to focus on details by light
transport rather than texture details

Visualization of factored neural radiance cache at primary vertex

L [T

Radiance cache Radiance cache = Prediction X Reflectance

Direct prediction Factorization

84

Spatiotemporal Reservoir Resampling for Real-time Ray Tracing with Dynamic Direct Lighting, Bitterli et al., SIGGRAPH 2020

ZERrRO DAy

Results — Numerical Results

PT+ReSTIR+NRC (Ours) Reference

Reference

MRSE / Frnerate:
SLIP:

MRSE / Framerate:
ILIP:

Path tracing

PT+NRC (Ours)

0.43

3.55/87.7fps |
0.25

27.69/76.7 fps

0.28

11.71/ 105 fps

0.63

10.99 / 73.3 fps
0.39

0.21

147 /69.6 fps
0.28

esults — Volume Rendering

Path tracing + NRC (Ours) Reference

Path tracing + NRC (Ours) Reference
14.6 / 116 fps 2.62 / 125 fps

Spatiotemporal Reservoir Resampling for Real-time Ray Tracing with Dynamic Direct Lighing, Bitterli et al., SIGGRAPH 2020
Dynamic Diffuse Global lllumination with Ray-traced Irradiance Fields, Majercik et al., JCGT 2019

Results — Rendering Cost

Table 3. Breakdown of rendering cost by component.

Scene Method Trace & shade Query Training
PT+ReSTIR 12.96 ms — —

ATTIC PT+ReSTIR+DDGI 11.56 ms 0.64 ms 1.78 ms
PT+ReSTIR+NRC 10.88 ms 1.66 ms 1.12 ms

PT+ReSTIR 13.75 ms — —

BisTRO PT+ReSTIR+DDGI 12.71 ms 0.65 ms 1.68 ms
PT+ReSTIR+NRC 11.96 ms 1.38 ms 1.11 ms

PT+ReSTIR 18.06 ms — —

Crassroom PT+ReSTIR+DDGI 1293 ms 0.59 ms 1.65 ms
PT+ReSTIR+NRC 12.28 ms 1.70 ms 1.11 ms

PT+ReSTIR 8.32 ms — —

Living Room PT+ReSTIR+DDGI 568 ms 0.52ms 0.99 ms
PT+ReSTIR+NRC 5.82ms 1.85 ms 1.11 ms

PT+ReSTIR 6.73 ms — —

Pink Room PT+ReSTIR+DDGI 5.56 ms 0.52 ms 0.89 ms
PT+ReSTIR+NRC 5.36 ms 1.54 ms 1.12 ms

PT+ReSTIR 13.89 ms — —

ZERO DAY PT+ReSTIR+DDGI 834 ms 0.54 ms 1.21 ms
PT+ReSTIR+NRC 8.67ms 1.41 ms 1.09 ms

PT+ReSTIR 12.29 ms — —

Average PT+ReSTIR+DDGI 9.46 ms 0.58 ms 1.37 ms
PT+ReSTIR+NRC 9.16 ms 1.59 ms 1.11 ms

Total

12.96 ms
13.98 ms
13.66 ms

13.75 ms
15.04 ms
14.45 ms

18.06 ms
15.17 ms
15.09 ms

8.32 ms
7.19 ms
8.78 ms

6.73 ms
6.97 ms
8.02 ms

13.89 ms
10.09 ms
11.17 ms

12.29 ms
11.41 ms
11.86 ms

87

