How Factorization Improves NeRF

D-NeRF and FastNeRF

May 18, 2022 Seokhyeon Hong

1

May 18, 2022 How Factorization Improves NeRF

Contents

- I. Recap
- II. D-NeRF
- III. FastNeRF

May 18, 2022

How Factorization Improves NeRF

KAIST Visual Media Lab.

3

NeX

- Adding view-dependency in MPI
 - Reflectance coefficients and neural basis functions

Ref-NeRF

- Improved view-dependency in NeRF
 - Integrated directional encoding (IDE)

Summary

Enhanced view-dependency

Rougher

Smoother

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Pumarola et al. CVPR 2021]

How Factorization Improves NeRF

Limitations of NeRF

- Training time
- Inference time
- Scalability
- Camera calibration
- Bounded scenes
- Static scenes

Limitations of NeRF

- Training time
- Inference time
- Scalability
- Camera calibration
- Bounded scenes
- Static scenes

Purpose

• NeRF in a dynamic domain

Purpose

- NeRF in a dynamic domain
 - Original NeRF: $(x, y, z, \theta, \phi) \rightarrow (r, g, b, \sigma)$
 - Naïve approach: $(x, y, z, \theta, \phi, t) \rightarrow (r, g, b, \sigma)$
 - Called as T-NeRF

Main Idea

• Factorization

- Factorization
 - Deformation network Ψ_{def}

- > Deformation field of a specific time instant with respect to the canonical space
- Canonical network Ψ_{can}
 - > Color and density given a point and a direction

Constraints

• Objects

- Movable and deformable
- NOT allowed to appear or disappear
- Camera
 - Only a single camera is used

Deformation Network

• Formulation

$$- \Psi_{\text{def}}(\mathbf{x}, t) = \begin{cases} \Delta \mathbf{x} & \text{if } t \neq 0\\ 0 & \text{if } t = 0 \end{cases}$$

- Positional encoding $\gamma(p) = \langle \sin(2^{l}\pi p), \cos(2^{l}\pi p) \rangle \rangle_{0}^{L}$
 - > L = 10 for x
 - > L = 4 for d and t

- Canonical Network
 - Formulation
 - $\Psi_{can}(\mathbf{x} + \Delta \mathbf{x}, \mathbf{d}) = (\mathbf{c}, \sigma)$

Volume Rendering

• NeRF's volume rendering equation

$$C(p) = \int_{h_n}^{h_f} T(h, t) \sigma(\mathbf{x}(h)) \mathbf{c}(\mathbf{x}(h), \mathbf{d}) dh,$$

where $T(h, t) = \exp\left(-\int_{h_n}^h \sigma(\mathbf{x}(s)) ds\right)$ and $\mathbf{x}(h) = \mathbf{o} + h\mathbf{d}$

Volume Rendering

- D-NeRF's volume rendering equation
 - Just the time parameter *t* is added

Volume Rendering

• Recap the overview

Network

- MLP
 - Ψ_{def} and Ψ_{can} consist of 8-layer MLPs with ReLU activation
- L2 loss
 - MSE between the rendered and real pixels

Synthesis Results

D-NeRF

Closest Input View

Closest Input Time

Visualization of the Learned Scene Representation

D-NeRF Radiance (as RGB) D-NeRF Volume Density (as Mesh) (as Depth)

D-NeRF Canonical Mapping (color-coded as $\mathbf{x} + \Delta \mathbf{x}$)

Results

Results D-NeRF D-NeRF T-NeRF NeRF GT

Contributions

- Dynamic scenes
 - Time as well as novel camera configuration are considered
 - Only one view per each time instance

Limitations

- Failure at poor camera poses
- Missing large deformations
 - Higher frame rate can resolve this problem
- Missing small details
- Limited by a fixed sequence

FastNeRF: High-Fidelity Neural Rendering at 200FPS [Garbin et al. ICCV 2021]

How Factorization Improves NeRF

Limitations of NeRF

- Training time
- Inference time
- Scalability
- Camera calibration
- Bounded scenes
- Static scenes

Purpose

• Rendering NeRF in real-time

- Caching
 - Trade-off between memory and time
 - Naïve approach
 - > Store every pair of (x, y, z, θ, ϕ) and (r, g, b, σ)
 - > $O(k^3 l^2)$ memory requirement (k: resolution for positions, l: resolution for directions)
 - > **5600TB** when k = l = 1024

Main Idea

• NeRF

- NeRF
 - Factorization
 - > Density: position-dependent
 - > Color: position- and direction-dependent

- Factorization
 - From what we have learned...
 - Rendering equation

$$L_o(\mathbf{p}, \mathbf{d}) = \int_{\Omega} f_r(\mathbf{p}, \mathbf{d}, \boldsymbol{\omega}_i) L_i(\mathbf{p}, \boldsymbol{\omega}_i)(\boldsymbol{\omega}_i \cdot \mathbf{n}) d\boldsymbol{\omega}_i$$

- Factorization
 - Spherical harmonics for approximation of rendering equation

- Factorization
 - Spherical harmonics for approximation of rendering equation
 - Dot product!

Main Idea

Factorization

Network Architecture

- Outputs
 - Position-dependent network F_{pos}
 - > Density
 - > D-dimensional deep radiance map
 - Direction-dependent network F_{dir}
 - > D-dimensional weights for the deep radiance map

Network Architecture

- $F_{\text{pos}}(\mathbf{p})$
 - $F_{\text{pos}}(\mathbf{p}) = (\sigma, \mathbf{u}, \mathbf{v}, \mathbf{w})$ where $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{D}$
 - 8-layer with 384 hidden units
- $F_{\text{dir}}(\mathbf{d})$
 - $F_{dir}(\mathbf{d}) = \boldsymbol{\beta}$ where $\boldsymbol{\beta} \in \mathbb{R}^{D}$
 - 4-layer with 256 hidden units
- Output

-
$$\mathbf{c} = (r, g, b) = \sum_{i=1}^{D} \beta_i(\mathbf{u}_i, \mathbf{v}_i, \mathbf{w}_i) = \boldsymbol{\beta}^T \cdot (\mathbf{u}, \mathbf{v}, \mathbf{w})$$

Caching

- Naïve approach
 - $O(k^3 l^2)$
 - > *k*: resolution for positions
 - > *l*: resolution for directions
 - > **5600TB** when k = l = 1024

Caching

- FastNeRF
 - $O(k^3(1+3D) + l^2D)$
 - > k: resolution for positions
 - > *l*: resolution for directions
 - > D: dimension of deep radiance maps
 - > 54GB when k = l = 1024, D = 8

Caching

- Is the size reasonable?
 - Smaller cache is enough in most cases
 - > k = 512, l = 256
 - Original NeRF actually spends more memory for inference
 - > 192 forward passes through an 8-layer 256 hidden unit MLP per pixel
 - Therefore, tremendous memory will be spent when NeRF is parallelized for similar performance

Neural radiance fields (NeRF)

NeRF@800x800 pixels - 0.06FPS

Comparison to NeRF

NeRF – 17.5K ms per frame

FastNeRF – 5.6 ms per frame

Deep radiance map

Output render

Deep radiance map components

Cache size

Cache 256³

Cache 768³

Cache 512^3

Results

Applications

Results

• Quantitative comparison

Scene		NeRF		Ours	s - No Ca	che	Ours - Cache			Speed
	<i>PSNR</i> ↑	$SSIM^{\uparrow}$	$LPIPS\downarrow$	$PSNR\uparrow$	$SSIM^{\uparrow}$	$LPIPS\downarrow$	$PSNR\uparrow$	$SSIM^{\uparrow}$	$LPIPS\downarrow$	
Nerf Synthetic	29.54dB	0.94	0.05	29.155dB	0.936	0.053	29.97dB	0.941	0.053	4.2ms
LLFF	27.72dB	0.88	0.07	$27.958 \mathrm{dB}$	0.888	0.063	$26.035 \mathrm{dB}$	0.856	0.085	1.4ms

Results

• Quantitative comparison

Scene	NeRF	Ours - No Cache	256^{3}	384^{3}	512^{3}	768^{3}	1024^{3}	Speedup over NeRF
Chair	17.5 K	28.2 K	0.8	1.1	1.4	2.0	2.7	6468 imes - $21828 imes$
Lego	17.5 K	28.2 K	1.5	2.1	2.8	4.2	5.6	3118 imes - $11639 imes$
Horns*	3.8 K	6.2 K	0.5	0.7	0.9	1.2	-	3183 imes - $7640 imes$
Leaves*	3.9 K	6.3 K	0.6	0.8	1.0	1.5	-	2626 imes - $6566 imes$

Results

- Ablation study on
 - Resolution
 - Value of *D*

Factors	No Cache		256^{3}		384^{3}		512^{3}		768^{3}	
	$PSNR^{\uparrow}$	Memory	<i>PSNR</i> ↑	Memory	<i>PSNR</i> ↑	Memory	<i>PSNR</i> ↑	Memory	$PSNR\uparrow$	Memory
4	27.11dB	-	24.81dB	0.34GB	26.29dB	0.61 GB	26.94dB	1.09 GB	27.54dB	2.51GB
6	27.12dB	-	24.82dB	$0.5 \mathrm{GB}$	26.34dB	0.93 GB	27.0dB	1.67 GB	27.58dB	4.1 GB
8	27.24dB	-	24.89dB	0.71 GB	26.42dB	1.41 GB	27.1dB	2.7 GB	27.72dB	7.15 GB
16	$27.68 \mathrm{dB}$	-	$25.07 \mathrm{dB}$	1.2 GB	26.77dB	2.08GB	27.55dB	3.72GB	28.3 dB	9.16GB

Contributions

- (More than) Real-time rendering
 - No forward passes are called by caching
 - Resolution rarely matters
- Reasonable memory requirement
 - Much less than the original NeRF parallelized for similar runtime performance

Limitations

- Others than the rendering time were not solved
 - Training time, camera calibration, scalability, ...
 - Convergence with other methods can resolve this problem
- Quality cannot outperform the baseline
- Sparse caching decreases the rendering quality
 - More memory is enforced for higher quality
- Reasonable but still burdensome memory requirement

Q&A

Seokhyeon Hong

ghd3079@kaist.ac.kr

How Factorization Improves NeRF

