NeRF for Real-time Rendering of Dynamic Scenes

Midterm Project Proposal

May 11, 2022 Team 5

May 11, 2022 NeRF for Real-time Rendering of Dynamic Scenes

Contents

- I. Introduction
- II. Related Work
- III. Proposal

NeRF for Real-time Rendering of Dynamic Scenes

KAIST Visual Media Lab.

Recap on NeRF

Limitations of NeRF

- Training time
- Inference time
- Scalability
- Camera calibration
- Static scene

- Limitations of NeRF
 - Training time
 - Inference time
 - Scalability
 - Camera calibration
 - Static scene

Why?

- How much time is needed for rendering 10-second scene with 60 fps?
 - NeRF: 30 seconds / frame
 - Rendering 600 frames will take 5 hours!

NeRF for Real-time Rendering of Dynamic Scenes

KAIST Visual Media Lab.

8

NeRF for Dynamic Scenes

- D-NeRF
- Nerfies
- Neural Scene Flow Fields
- • •

Pumarola et al. D-nerf: Neural radiance fields for dynamic scenes. CVPR 2021. Park et al. Nerfies: Deformable neural radiance fields. ICCV 2021. Li et al. Neural scene flow fields for space-time view synthesis of dynamic scenes. CVPR 2021.

NeRF for Dynamic Scenes

- D-NeRF
- Nerfies
- Neural Scene Flow Fields
- • • •

Pumarola et al. D-nerf: Neural radiance fields for dynamic scenes. CVPR 2021. Park et al. Nerfies: Deformable neural radiance fields. ICCV 2021. Li et al. Neural scene flow fields for space-time view synthesis of dynamic scenes. CVPR 2021.

D-NeRF

- Main idea
 - 6D input: $(x, y, z, \theta, \phi) + t$
 - Factorization
 - > Deformation network
 - > Canonical network

D-NeRF

• Factorization

t=???

t=0

D-NeRF

- Limitations
 - No improvement in the rendering process

NeRF for Fast Rendering

- KiloNeRF
- FastNeRF
- PlenOctrees
- Neural Graphics Primitives
- Mixture of Volumetric Primitives

• • • • •

Reiser et al. Kilonerf: Speeding up neural radiance fields with thousands of tiny mlps. ICCV 2021. Garbin et al. Fastnerf: High-fidelity neural rendering at 200fps. ICCV 2021. Yu et al. Plenoctrees for real-time rendering of neural radiance fields. ICCV 2021. Lombardi et al. Mixture of volumetric primitives for efficient neural rendering. SIGGRAPH 2021. Müller et al. Instant neural graphics primitives with a multiresolution hash encoding. SIGGRAPH 2022.

NeRF for Fast Rendering

- KiloNeRF
- FastNeRF
- PlenOctrees
- Neural Graphics Primitives
- Mixture of Volumetric Primitives

• • • • •

Reiser et al. Kilonerf: Speeding up neural radiance fields with thousands of tiny mlps. ICCV 2021. Garbin et al. Fastnerf: High-fidelity neural rendering at 200fps. ICCV 2021. Yu et al. Plenoctrees for real-time rendering of neural radiance fields. ICCV 2021. Lombardi et al. Mixture of volumetric primitives for efficient neural rendering. SIGGRAPH 2021. Müller et al. Instant neural graphics primitives with a multiresolution hash encoding. SIGGRAPH 2022.

FastNeRF

- Main idea
 - Test-time reduction by caching

FastNeRF

- Main idea
 - Test-time reduction by caching
 - Problem
 - $\Rightarrow RGB = f(x, y, z, \theta, \phi)$
 - > Therefore, $O(N^5)$ memory is required
 - > 5600TB is required for 1024 cache resolution

FastNeRF

- Main idea
 - Factorization of NeRF
 - > Position-dependent network
 - > Direction-dependent network

FastNeRF

• Runtime performance

FastNeRF

• Runtime performance

Factors	No Cache		256^{3}		384^{3}		512^{3}		768^{3}	
	<i>PSNR</i> ↑	Memory	<i>PSNR</i> ↑	Memory	<i>PSNR</i> ↑	Memory	<i>PSNR</i> ↑	Memory	<i>PSNR</i> ↑	Memory
4	27.11dB	-	24.81dB	0.34GB	26.29dB	0.61 GB	26.94dB	1.09 GB	27.54dB	2.51 GB
6	27.12dB	-	24.82dB	$0.5 \mathrm{GB}$	26.34dB	0.93GB	27.0dB	1.67 GB	27.58dB	4.1 GB
8	27.24dB	-	24.89dB	$0.71 \mathrm{GB}$	26.42dB	1.41 GB	27.1dB	2.7 GB	27.72dB	7.15 GB
16	$27.68 \mathrm{dB}$	-	$25.07 \mathrm{dB}$	1.2 GB	26.77dB	2.08GB	$27.55 \mathrm{dB}$	3.72GB	28.3dB	9.16 GB

May 11, 2022

NeRF for Real-time Rendering of Dynamic Scenes

KAIST Visual Media Lab. 21

NeRF for Real-time Rendering of Dynamic Scenes

- Problem of caching in dynamic scenes
 - Memory requirement can be increased with respect to the time

NeRF for Real-time Rendering of Dynamic Scenes

- Problem of caching in dynamic scenes
 - Memory requirement can be increased with respect to the time
 - However, deformation module can resolve this problem
 - Same part between different time is mapped onto the same point by deformation network
 - > Then, the cached size does not have to be increased

NeRF for Real-time Rendering of Dynamic Scenes

- Combination of each strength
 - Deformation module from D-NeRF
 - Caching from FastNeRF
 - Then, real-time rendering of dynamic scenes will be possible

Role

- Sangwon Kwak
 - Survey on NeRF for dynamic scenes
 - Dataset generation
- Seokhyeon Hong
 - Survey on NeRF for fast rendering
 - Training the network
- Common
 - Code integration
 - Result analysis and presentation

Q&A

Team 5

NeRF for Real-time Rendering of Dynamic Scenes

26