
CS482:
Ray Tracing

Sung-Eui Yoon
(윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/ICG/

2

Class Objectives (Ch. 10)
●Understand a basic ray tracing
● Know its acceleration data structure and

how to use it
●Rendering book

https://sgvr.kaist.ac.kr/~sungeui/render/

https://sgvr.kaist.ac.kr/%7Esungeui/render/

3

The Classic Rendering Pipeline

4

Why we are using rasterization?
● Efficiency
●Reasonably quality

5

Fermi GPU Architecture
16 SM (streaming processors)

512 CUDA cores

Memory interfaces

6

Turing Architecture, 2018
● Aims to combine shade, compute, ray

tracing, and AI

7

A100
Ampere Architecture, 2020
●More cores, faster computation than Turing

Architecture

8

Nvidia Hopper Architecture (18K
FP32 cores)

9

H100
Hopper (or Ada Lovelace), 2022

10

Recent CPU Chips (Intel’s Core
i7 processors) around 2020

11

Intel Core i9-13900K (USD 650 ==
800 Korean won)

12

13

But what about other visual
cues?
● Lighting

● Shadows
● Shading: glossy, transparency

● Color bleeding, etc

from Henrik’s homepage

14

Recursive Ray Casting
●Gained popularity in when

Turner Whitted (1980)
recognized that recursive
ray casting could be used
for global illumination
effects

15

Ray Casting and Ray Tracing
● Trace rays from eye into scene

● Backward ray tracing
●Ray casting used to compute visibility at

the eye
● Perform ray tracing for arbitrary rays

needed for shading
● Reflections
● Refraction and transparency
● Shadows

16

●Rays are cast from the eye point through
each pixel in the image

Basic Algorithms

17

Shadows
● Cast ray from the intersection point to each

light source
● Shadow rays

Used 3ds Max

18

Reflections
● If object specular, cast secondary reflected

rays

19

Refractions
● If object transparent, cast secondary

refracted rays

20

An Improved Illumination Model
[Whitted 80]
● Phong illumination model

●Whitted model

● S and T are intensity of light from reflection
and transmission rays

● Ks and Kt are specular and transmission
coefficient

∑
=

•+•+=
numLi ght s

1j

nj
s

j
sj

j
d

j
d

j
a

j
ar))RV(Ik)LN(IkI(kI sˆˆˆˆ

TkSk))LN(IkI(kI ts

numLi ght s

1j
j

j
d

j
d

j
a

j
ar ++•+= ∑

=

ˆˆ

21

OpenGL’s Illumination Model

∑
=

•+•+=
numLi ght s

1j

nj
s

j
sj

j
d

j
d

j
a

j
ar , 0)))RVmax((Ik) , 0)LNmax((IkI(kI sˆˆˆˆ

From Wikipedia

22

Ray Tree

eye

s0

b

a

dc

f
e

s1s2

eye

a bs0

e fs2 c bs1

R T

R R TT

23

Acceleration Methods for Ray
Tracing
● Rendering time for a ray tracer depends on the

number of ray intersection tests per pixel
● The number of pixels X the number of primitives in the scene

● Early efforts focused on accelerating the ray-
object intersection tests
● Ray-triangle intersection tests

● More advanced methods required to make ray
tracing practical
● Bounding volume hierarchies
● Spatial subdivision (e.g., kd-trees)

24

Bounding Volumes
● Enclose complex objects within a simple-to-

intersect objects
● If the ray does not intersect the simple object then its contents

can be ignored
● The likelihood that it will strike the object depends on how

tightly the volume surrounds the object.

● Spheres are simple, but not tight
● Axis-aligned bounding boxes often better

● Can use nested or hierarchical bounding volumes

25

Bounding Volumes

●Sphere [Whitted80]
● Cheap to compute
● Cheap test
● Potentially very bad fit

●Axis-Aligned Bounding Box
● Very cheap to compute
● Cheap test
● Tighter than sphere

26

Bounding Volumes
●Oriented Bounding Box

● Fairly cheap to compute
● Fairly Cheap test
● Generally fairly tight

● Slabs / K-dops
● More expensive

to compute
● Fairly cheap test
● Can be tighter than OBB

27

Bounding Volume Hierarchy
(BVH)
●Organize bounding volumes as a tree

● Choose a partitioning plane and distribute
triangles into left and right nodes

● Each ray starts with the scene BV and
traverses down through the hierarchy

r

Test-Of-Time 2006 Award

RT-DEFORM: Interactive Ray Tracing
of Dynamic Scenes using BVHs
Christian Lauterbach, Sung-eui Yoon,
David Tuft, Dinesh Manocha
IEEE Interactive Ray Tracing, 2006

29

Spatial Subdivision
Idea: Divide space in to subregions
● Place objects within a subregion into a list
● Only traverse the lists of subregions that the ray

passes through
● “Mailboxing” used to avoid multiple test with

objects in multiple regions
● Many types

● Regular grid
● Octree
● BSP tree
● kd-tree

30

Classic Ray Tracing
● Gathering approach

● From lights, reflected, and refracted
directions

● Pros of ray tracing
● Simple and improved realism over

the rendering pipeline

● Cons:
● Simple light model, material, and light propagation
● Not a complete solution
● Hard to accelerate with special-purpose H/W

31

History
● Problems with classic ray tracing

● Not realistic
● View-dependent

●Radiosity (1984)
● Global illumination in diffuse scenes

●Monte Carlo ray tracing (1986)
● Global illumination for any environment

32

Interactive Ray Tracing Kernels
●OptiX, Nvidia

● Utilize GPU computing architectures and CUDA

● Embree, Intel
● Utilize CPUs (multi-threaded and SIMD)

33

PA1
●Get to know OptiX or

Embree
● Download, and compile

either one of those two
methods

● Or just use precompiled ones
● Try out a few scenes
● Upload images of those

scenes in KLMS
●Deadline

● Check the KLMS
●Note

● Easy one, but start early

34

Homework
●Go over the next lecture slides before the

class
●Watch 2 paper (or videos) and submit your

summaries before every Mon. class
● Just one paragraph for each summary

Example:
Title: XXX XXXX XXXX
Abstract: this video is about accelerating the
performance of ray tracing. To achieve its goal, they
design a new technique for reordering rays, since by
doing so, they can improve the ray coherence and thus
improve the overall performance.

35

Any Questions?
● Come up with one question on what we

have discussed in the class and submit at
the end of the class
● 1 for typical questions
● 2 for questions that have some thoughts or

surprise me

●Write a question more than 4 times on
Sep./Oct.
● Online submission is available at the course

webpage

36

Class Objectives were:
●Understand a basic ray tracing
● Know its acceleration data structure and

how to use it

37

Next Time
●Radiosity

	슬라이드 번호 1
	Class Objectives (Ch. 10)
	The Classic Rendering Pipeline
	Why we are using rasterization?
	Fermi GPU Architecture
	Turing Architecture, 2018
	A100�Ampere Architecture, 2020
	Nvidia Hopper Architecture (18K FP32 cores)
	H100�Hopper (or Ada Lovelace), 2022
	Recent CPU Chips (Intel’s Core i7 processors) around 2020
	Intel Core i9-13900K (USD 650 == 800 Korean won)
	슬라이드 번호 12
	But what about other visual cues?
	Recursive Ray Casting
	Ray Casting and Ray Tracing
	Basic Algorithms
	Shadows
	Reflections
	Refractions
	An Improved Illumination Model [Whitted 80]
	OpenGL’s Illumination Model
	Ray Tree
	Acceleration Methods for Ray Tracing
	Bounding Volumes
	Bounding Volumes
	Bounding Volumes
	Bounding Volume Hierarchy (BVH)
	Test-Of-Time 2006 Award
	Spatial Subdivision
	Classic Ray Tracing
	History
	Interactive Ray Tracing Kernels
	PA1
	Homework
	Any Questions?
	Class Objectives were:
	Next Time

