CS482: Radiometry and Rendering Equation

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/ICG/

Announcements

- Make a project team of 2 or 3 persons for your final project
 - Each student has a clear role
 - Declare the team at the KLMS by 10/1; you don't need to define the topic by then

• Each team

- Present 2 or 3 papers related to the project
- 30 min (for 2)or 35 (for 3) min for each talk; simple quiz (prepare blank papers)
- Each team
 - Give a mid-term review presentation for the project
 - Give the final project presentation

Tentative Schedule (After Midterm Exam)

- Oct. 28 no class due to undergraduate interview
- Oct. 30: Students Presentation I (2 or 3 talks per each class)
- Nov. 4, 6,
- Nov 11, 13: Mid-term project presentation
- Nov. 18, 20 : SP II (2 or 3 talks per each class)
- Nov. 25
- Nov. 27: reserved
- Dec. 2/4: Final project presentation
- Dec. 9/11: no class due to conf. attendance?
- Dec. 16, 18 Reserved (final exam week; no exam for us, reserved)

Deadlines

Declare project team members

- By 10/1 at KLMS
- Confirm schedules of paper talks and project talks at 10/2
- Declare two papers for student presentations
 - by 10/13 at KLMS
 - Discuss them at the class of 10/14
 - Choose graphics papers from 2020 ~ published on top-tier conf. (SIGGRAPH, CVPR, etc.)

Class Objectives (Ch. 12 and 13)

• Know terms of:

- Hemispherical coordinates and integration
- Various radiometric quantities (e.g., radiance)
- Basic material function, BRDF
- Understand the rendering equation

Motivation

Light and Material Interactions

- Physics of light
- Radiometry
- Material properties

Rendering equation

Models of Light

Quantum optics

- Fundamental model of the light
- Explain the dual wave-particle nature of light
- Wave model
 - Simplified quantum optics
 - Explains diffraction, interference, and polarization

Geometric optics

- Most commonly used model in CG
- Size of objects >> wavelength of light
- Light is emitted, reflected, and transmitted

Radiometry and Photometry

Photometry

• Quantify the perception of light energy

Radiometry

- Measurement of light energy: critical component for photo-realistic rendering
- Light energy flows through space, and varies with time, position, and direction
- Radiometric quantities: densities of energy at particular places in time, space, and direction
- Briefly discussed here; refer to my book

Hemispheres

Hemisphere

Two-dimensional surfaces

Direction

Point on (unit) sphere

 $\theta \in [0, \frac{\pi}{2}]$ $\varphi \in [0, 2\pi]$

From kavita's slides

Solid Angles

View on the hemisphere

Full circle = 2pi radians

Full sphere = 4pi steradians

Hemispherical Coordinates

- Direction, Θ
 - Point on (unit) sphere

 $dA = (r\sin\theta d\varphi)(rd\theta)$

From kavita's slides

Hemispherical Coordinates

- Direction, Θ
 - Point on (unit) sphere

 $sin \theta = \frac{x}{r},$ $x = rsin \theta$

$$dA = (r\sin\theta d\varphi)(rd\theta)$$

From kavita's slides

Hemispherical Coordinates

Differential solid angle

 $d\omega = \frac{dA}{r^2} = \sin\theta d\theta d\varphi$

Hemispherical Integration

Area of hemispehre:

$$\int_{\Omega_x} d\omega = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/2} \sin \theta d\theta$$
$$= \int_{0}^{2\pi} d\varphi \left[-\cos \theta \right]_{0}^{\pi/2}$$
$$= \int_{0}^{2\pi} d\varphi$$
$$= 2\pi$$

Irradiance

- Incident radiant power per unit area (dP/dA)
 - Area density of power

• Symbol: E, unit: W/ m²

 Area power density exiting a surface is called radiance exitance (M) or radiosity (B)

• For example

- A light source emitting 100 W of area 0.1 m²
- Its radiant exitance is 1000 W/ m²

Radiance

• Radiant power at x in direction θ

- $L(x \rightarrow \Theta)$: 5D function
 - Per unit area
 - Per unit solid angle

Important quantity for rendering

Radiance

• Radiant power at x in direction θ

L(x → ⊙) : 5D function
Per unit area
Per unit solid angle

$$L(x \to \Theta) = \frac{d^2 P}{dA^{\perp} d\omega_{\Theta}}$$

- Units: Watt / (m² sr)
- Irradiance per unit solid angle
- 2nd derivative of P
- Most commonly used term

Radiance: Projected Area

Why per unit projected surface area

Sensitivity to Radiance

 Responses of sensors (camera, human eye) is proportional to radiance

From kavita's slides

 Pixel values in image proportional to radiance received from that direction

Properties of Radiance

Invariant along a straight line (in vacuum)

From kavita's slides

Invariance of Radiance

We can prove it based on the assumption the conservation of energy.

Relationships

Radiance is the fundamental quantity

$$L(x \to \Theta) = \frac{d^2 P}{dA^{\perp} d\omega_{\Theta}}$$

$$P = \int_{Area} \int_{Solid} L(x \to \Theta) \cdot \cos\theta \cdot d\omega_{\Theta} \cdot dA$$
Angle

• Radiosity:

$$B = \int L(x \to \Theta) \cdot \cos \theta \cdot d \omega_{\Theta}$$
Solid
Angle

Light and Material Interactions

- Physics of light
- Radiometry
- Material properties

Rendering equation

Materials

From kavita's slides

Bidirectional Reflectance Distribution Function (BRDF)

$$f_r(x, \Psi \to \Theta) = \frac{dL(x \to \Theta)}{dE(x \leftarrow \Psi)} = \frac{dL(x \to \Theta)}{L(x \leftarrow \Psi)\cos\psi dw_{\Psi}}$$

BRDF special case: ideal diffuse

Pure Lambertian

$$f_r(x, \Psi \to \Theta) = \frac{\rho_d}{\pi}$$

Energy_{out} Energy_{in} $0 \le \rho_d \le 1$ ρ_d

Savita Bala, Computer Science, Cornell University

Other Distribution Functions: BxDF

BSDF (S: Scattering)

 The general form combining BRDF + BTDF (T: Transmittance)

BSSRDF (SS: Surface Scattering)

Handle subsurface scattering

wiki

KA15

Light and Material Interactions

- Physics of light
- Radiometry
- Material properties

Rendering equation

Light Transport

Goal

 Describe steady-state radiance distribution in the scene

Assumptions

- Geometric optics
- Achieves steady state instantaneously

- Describes energy transport in the scene
- Input
 - Light sources
 - Surface geometry
 - Reflectance characteristics of surfaces
- Output
 - Value of radiances at all surface points in all directions

$$L_r(x \to \Theta) = \int_{\Psi} L(x \leftarrow \Psi) f_r(x, \Psi \to \Theta) \cos \theta_x dw_{\Psi},$$

• Applicable to all wave lengths

Rendering Equation: Area Formulation

 $L(x \to \Theta) = L_e(x \to \Theta) + \int f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_x \cdot d\omega_{\Psi}$

Ray-casting function: what is the nearest visible surface point seen from x in direction Ψ ?

 $y = vp(x, \Psi)$ $L(x \leftarrow \Psi) = L(vp(x, \Psi) \rightarrow -\Psi)$

© Kavita Bala, Computer Science, Cornell University

$$L(x \to \Theta) = L_e(x \to \Theta) + \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_x \cdot d\omega_{\Psi}$$

$$y = vp(x, \Psi)$$

$$L(x \leftarrow \Psi) = L(vp(x, \Psi) \rightarrow -\Psi)$$

$$d\omega_{\Psi} = \frac{dA_y \cos \theta_y}{r_{xy}^2}$$

Rendering Equation: Visible Surfaces

$$L(x \to \Theta) = L_e(x \to \Theta) + \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_x \cdot d\omega_{\Psi}$$

Coordinate transform
$$L(x \to \Theta) = L_e(x \to \Theta) + \int_{all surfaces} f_r(\Psi \leftrightarrow \Theta) \cdot L(y \to -\Psi) \cos \theta_x \cdot \frac{\cos \theta_y}{r_{xy}^2} \cdot dA_y$$
$$y = vp(x, \Psi)$$

Integration domain = visible surface points y

 Integration domain extended to ALL surface points by including visibility function

Rendering Equation: All Surfaces

40

Two Forms of the Rendering Equation

Hemisphere integration

$$L_r(x \to \Theta) = \int_{\Psi} L(x \leftarrow \Psi) f_r(x, \Psi \to \Theta) \cos \theta_x dw_{\Psi}$$

Area integration (used as the form factor for radiosity)

$$L_r(x \to \Theta) = \int_A L(y \to -\Psi) f_r(x, \Psi \to \Theta) \frac{\cos \theta_x \cos \theta_y}{r_{xy}^2} V(x, y) dA,$$

Class Objectives (Ch. 12 & 13) were:

• Know terms of:

- Hemispherical coordinates and integration
- Various radiometric quantities (e.g., radiance)
- Basic material function, BRDF
- Understand the rendering equation

Any Questions?

- Submit four times in Sep./Oct.
- Come up with one question on what we have discussed in the class and submit at the end of the class
 - 1 for typical questions
 - 2 for questions that have some thoughts or surprise me

Next Time

Monte Carlo rendering methods

Homework

- Go over the next lecture slides before the class
- Watch two videos or go over papers, and submit your summaries every Mon. class
 - Just one paragraph for each summary

Example:

Title: XXX XXXX XXXX

Abstract: this video is about accelerating the performance of ray tracing. To achieve its goal, they design a new technique for reordering rays, since by doing so, they can improve the ray coherence and thus improve the overall performance.

