CS482: Radiometry and Rendering Equation

Sung-Eui Yoon (윤성의**)**

Course URL:http://sglab.kaist.ac.kr/~sungeui/ICG/

Announcements

- ● **Make a project team of 2 or 3 persons for your final project**
	- **Each student has a clear role**
	- **Declare the team at the KLMS by 10/1; you don't need to define the topic by then**

● **Each team**

- **Present 2 or 3 papers related to the project**
- **30 min (for 2)or 35 (for 3) min for each talk; simple quiz (prepare blank papers)**
- **Each team**
	- **Give a mid-term review presentation for the project**
	- **Give the final project presentation**

Tentative Schedule (After Mid- term Exam)

- **Oct. 28 no class due to undergraduate interview**
- **Oct. 30: Students Presentation I (2 or 3 talks per each class)**
- **Nov.** 4, 6,
- **Nov 11, 13: Mid-term project presentation**
- **Nov. 18, 20 : SP II (2 or 3 talks per each class)**
- **Nov. 25**
- **Nov. 27: reserved**
- ●**Dec. 2/4: Final project presentation**
- ●**Dec. 9/11: no class due to conf. attendance?**
- **5reserved)** ●**Dec. 16, 18 Reserved (final exam week; no exam for us,**

Deadlines

● **Declare project team members**

- **By 10/1 at KLMS**
- **Confirm schedules of paper talks and project talks at 10/2**
- ● **Declare two papers for student presentations**
	- **by 10/13 at KLMS**
	- **Discuss them at the class of 10/14**
	- Choose graphics papers from 2020 \sim **published on top-tier conf. (SIGGRAPH, CVPR, etc.)**

Class Objectives (Ch. 12 and 13)

● **Know terms of:**

- **Hemispherical coordinates and integration**
- **Various radiometric quantities (e.g., radiance)**
- **Basic material function, BRDF**
- **Understand the rendering equation**

Motivation

Light and Material Interactions

- ●**Physics of light**
- **Radiometry**
- **Material properties**

From kavita's slides

• Rendering equation

Models of Light

● **Quantum optics**

- **Fundamental model of the light**
- ●**Explain the dual wave-particle nature of light**

● **Wave model**

- **Simplified quantum optics**
- **Explains diffraction, interference, and polarization**

● **Geometric optics**

- ●**Most commonly used model in CG**
- **Size of objects >> wavelength of light**
- **Light is emitted, reflected, and transmitted**

Radiometry and Photometry

● **Photometry**

● **Quantify the perception of light energy**

● **Radiometry**

- **Measurement of light energy: critical component for photo-realistic rendering**
- **Light energy flows through space, and varies with time, position, and direction**
- **Radiometric quantities: densities of energy at particular places in time, space, and direction**
- **Briefly discussed here; refer to my book**

Hemispheres

● **Hemisphere**

● **Two-dimensional surfaces**

● **Direction**

● **Point on (unit) sphere**

 $\theta \in [0, \frac{\pi}{2}]$ $\varphi \in [0, 2\pi]$

From kavita's slides

Solid Angles

View on the hemisphere

Full circle = 2pi radians

Full sphere = 4pi steradians

Hemispherical Coordinates

- Direction, Θ
	- **Point on (unit) sphere**

 $dA = (r \sin \theta d\varphi)(rd\theta)$

From kavita's slides

Hemispherical Coordinates

- Direction, Θ
	- **Point on (unit) sphere**

$$
sin \theta = \frac{x}{r},
$$

$$
x = r sin \theta
$$

$$
dA = (r\sin\theta d\varphi)(rd\theta)
$$

From kavita's slides

Hemispherical Coordinates

●**Differential solid angle**

 $d\omega = \frac{dA}{r^2} = \sin \theta d\theta d\varphi$

Hemispherical Integration

●**Area of hemispehre:**

$$
\int_{\Omega_x} d\omega = \int_0^{2\pi} d\varphi \int_0^{\pi/2} \sin \theta d\theta
$$
\n
$$
= \int_0^{2\pi} d\varphi [-\cos \theta]_0^{\pi/2}
$$
\n
$$
= \int_0^{2\pi} d\varphi
$$
\n
$$
= 2\pi
$$

Irradiance

- **Incident radiant power per unit area (dP/dA)**
	- **Area density of power**

●**Symbol: E, unit: W/ m2**

● **Area power density exiting a surface is called radiance exitance (M) or radiosity (B)**

● **For example**

- **A light source emitting 100 W of area 0.1 m2**
- **Its radiant exitance is 1000 W/ m2**

Radiance

●**Radiant power at x in direction θ**

- $L(x \rightarrow \Theta)$: 5D function
	- ●**Per unit area**
	- ●**Per unit solid angle**

●**Important quantity for rendering**

Radiance

●**Radiant power at x in direction θ**

• $L(x \rightarrow \Theta)$: 5D function ●**Per unit area**●**Per unit solid angle**

$$
L(x \to \Theta) = \frac{d^2 P}{dA^{\perp} d\omega_{\Theta}}
$$

- **Units: Watt / (m2 sr)**
- **Irradiance per unit solid angle**
- **2nd derivative of P**
- **Most commonly used term**

Radiance: Projected Area

●**Why per unit projected surface area**

Sensitivity to Radiance

● **Responses of sensors (camera, human eye) is proportional to radiance**

From kavita's slides

● **Pixel values in image proportional to radiance received from that direction**

Properties of Radiance

● **Invariant along a straight line (in vacuum)**

From kavita's slides

Invariance of Radiance

on the assumption the conservation of energy.

Relationships

●**Radiance is the fundamental quantity**

$$
L(x \to \Theta) = \frac{d^2 P}{dA^{\perp} d\omega_{\Theta}}
$$

● **Power:**

$$
P = \int_{Area\, Solid}_{Area\, Solid} L(x \to \Theta) \cdot \cos \theta \cdot d\omega_{\Theta} \cdot dA
$$

• **Radiusity:**

$$
B = \int_{\text{Solid} \atop \text{Angle}} L(x \rightarrow \Theta) \cdot \cos \theta \cdot d\omega_{\Theta}
$$

Light and Material Interactions

- ●**Physics of light**
- **Radiometry**
- **Material properties**

From kavita's slides

• Rendering equation

Materials

Bidirectional Reflectance Distribution Function (BRDF)

$$
f_r(x, \Psi \to \Theta) = \frac{dL(x \to \Theta)}{dE(x \leftarrow \Psi)} = \frac{dL(x \to \Theta)}{L(x \leftarrow \Psi) \cos \psi d\psi}
$$

BRDF special case: ideal diffuse

Pure Lambertian

 $f_r(x, \Psi \to \Theta) = \frac{\rho_d}{\pi}$

 $\rho_{d} = \frac{Energy_{out}}{Energy_{in}}$ $0 \leq \rho_d \leq 1$

© Kavita Bala, Computer Science, Cornell University

Other Distribution Functions: BxDF

● **BSDF (S: Scattering)**

● **The general form combining BRDF + BTDF (T: Transmittance)**

●**BSSRDF (SS: Surface Scattering)**

● **Handle subsurface scattering**

Light and Material Interactions

- ●**Physics of light**
- **Radiometry**
- **Material properties**

● **Rendering equation**

Light Transport

● **Goal**

● **Describe steady-state radiance distribution in the scene**

● **Assumptions**

- **Geometric optics**
- **Achieves steady state instantaneously**

- **Describes energy transport in the scene**
- **Input**
	- **Light sources**
	- **Surface geometry**
	- **Reflectance characteristics of surfaces**
- **Output**
	- **Value of radiances at all surface points in all directions**

$$
L_r(x \to \Theta) = \int_{\Psi} L(x \leftarrow \Psi) f_r(x, \Psi \to \Theta) \cos \theta_x d\omega_{\Psi},
$$

• **Applicable to all wave lengths**

Rendering Equation: Area Formulation

 $L(x \to \Theta) = L_e(x \to \Theta) + \int f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_x \cdot d\omega_\Psi$

Ray-casting function: what is the nearest visible surface point seen from x in direction Ψ ?

 $y = \nu p(x, \Psi)$ $L(x \leftarrow \Psi)$ $L(x \leftarrow \Psi) = L(\nu p(x, \Psi) \rightarrow -\Psi)$

C Kavita Bala, Computer Science, Cornell University

$$
L(x \to \Theta) = L_e(x \to \Theta) + \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_x \cdot d\omega_\Psi
$$

$$
y = vp(x, \Psi)
$$

$$
L(x \leftarrow \Psi) = L(\nu p(x, \Psi) \rightarrow -\Psi)
$$

$$
d\omega_{\Psi} = \frac{dA_y \cos \theta_y}{r_{xy}^2}
$$

Rendering Equation: Visible Surfaces

$$
L(x \to \Theta) = L_e(x \to \Theta) + \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_x \cdot d\omega_\Psi
$$

\n
$$
L(x \to \Theta) = L_e(x \to \Theta) + \int_{\text{point}} f_r(\Psi \leftrightarrow \Theta) \cdot L(y \to -\Psi) \cos \theta_x \cdot \frac{\cos \theta_y}{r_x^2} \cdot dA_y
$$

\n
$$
= \int_{\text{all surfaces}} y \cdot \cos \theta_x \cdot \frac{\cos \theta_y}{r_x^2} \cdot dA_y
$$

\n
$$
y = \frac{vp(x, \Psi)}{r_x^2}
$$

- nnegration domain visiole surface pomis y
- Integration domain extended to ALL surface points by including visibility function

Rendering Equation: All Surfaces

40

Two Forms of the Rendering Equation

• Hemisphere integration

$$
L_r(x \to \Theta) = \int_{\Psi} L(x \leftarrow \Psi) f_r(x, \Psi \to \Theta) \cos \theta_x dw_{\Psi}.
$$

●**Area integration (used as the form factor for radiosity)**

$$
L_r(x \to \Theta) = \int_A L(y \to -\Psi) f_r(x, \Psi \to \Theta) \frac{\cos \theta_x \cos \theta_y}{r_{xy}^2} V(x, y) dA,
$$

Class Objectives (Ch. 12 & 13) were:

● **Know terms of:**

- **Hemispherical coordinates and integration**
- **Various radiometric quantities (e.g., radiance)**
- **Basic material function, BRDF**
- **Understand the rendering equation**

Any Questions?

- ●**Submit four times in Sep./Oct.**
- **Come up with one question on what we have discussed in the class and submit at the end of the class**
	- **1 for typical questions**
	- **2 for questions that have some thoughts or surprise me**

Next Time

● **Monte Carlo rendering methods**

Homework

- **Go over the next lecture slides before the class**
- **Watch two videos or go over papers, and submit your summaries every Mon. class**
	- **Just one paragraph for each summary**

Example:

Title: XXX XXXX XXXX

Abstract: this video is about accelerating the performance of ray tracing. To achieve its goal, they design a new technique for reordering rays, since by doing so, they can improve the ray coherence and thus improve the overall performance.

