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Class Objectives (Ch. 14)

e Sampling approach for solving the
rendering equation

e Monte Carlo integration
e Estimator and its variance

e Book:
o https://sgvr.kaist.ac.kr/~sungeui/render/
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Radiance Evaluation

e Fundamental problem in GI algorithm

e Evaluate radiance at a given surface point in a
given direction

e Invariance defines radiance everywhere else
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We need to find many paths...
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Why Monte Carlo?

e Radiance is hard to evaluate
L(x — ©) = / L(x « ¥)f,(x, ¥ = ©)cos bydwy,
b 4
P Ly
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e Sample many paths
e Integrate over all incoming directions

e Analytical integration is difficult
e Need numerical techniques
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Monte Carlo Integration

e Numerical tool to evaluate integrals
e Use sampling

e Stochastic errors

e Unbiased
e On average, we get the right answer
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Numerical Integration

* A one-dimensional integral:

& Kavita Bala, Computer Science, Cornell University



Deterministic Integration

« Quadrature rules:

& Kavita Bala, Computer Science, Cornell University



Monte Carlo Integration

Primary estimator:

& Kavita Bala, Computer Science, Cormell University



Monte Carlo Integration

Primary estimator:

Unbiased estunator!

& Kavita Bala, Computer Science, Cornell University



Monte Carlo Integration

Primary estimator:

Unbiased estumator!
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Monte Carlo Integration: Error

Variance of the estimator — a measure of
the stochastic error

)

Consider p(x) for estimate
‘We will study it as importance sampling later

& Kavita Bala, Computer Science, Cornell University



More samples

Secondary estimator

amples X,

Generate N randomm s

Estimator:

Variance

& Kavita Bala, Computer Sc%nn&, Cornell University



Mean Square Error of MC
Estimator

e MSE

MSE(Y) = E[(Y =) =N Z} — X3)

e Decomposed into bias and variance terms
MSE(Y) = E | (Y = E[Y])*] + (E(Y) - Y)?
= Var(Y) + Bias(Y, Y)>.

e Bias: how far the estimation is away from
the ground truth

e Variance: how far the estimation is away

from its average estimator
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Bias of MC Estimator

E[l] =

f (xi)
NZ p(x; }
N /Zm' p(x)dx

P (xi)

(x) .
=N Z ( Y )dx, . x; samples have the same p(x)
/ X |

=5 / f(x)dx =1. (14.6)

e On average, it gives the right answer:
unbiased
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Variance of MC Estimator

f(x;). :
= Z Var("l (‘ ') ),".” X; samples are independent from each other.

-),"." xj samples are from the same distribution.

i 2
D p(x)dx. (14.7)

-N
- .
P

S—

19 KAIST.



MC Integration - Example

— Integral

— Uniform sampling  ———1

— Samples :

X, = .41 <[==1.44

Xg= .38 <I[==10.75

& Kavita Bala, Computer Science, Cornell University



MC Integration - Example

e Integral

1

| =

-
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|
Z| =

Code:

mc_int_ex.m

Available at my rendering book hompage
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MC Integration: 2D

« Secondary estimator:

& Kavita Bala, Computer Science, Cornell University



Monte Carlo Integration - 2D

« MC Integration works well for higher
dimensions

« Unlike quadrature

& Kavita Bala, Computer Science, Cornell University
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Advantages of MC

» Convergence rate of o( )

e Simple
e Sampling
e Point evaluation

e General
e Works for high dimensions
e Deals with discontinuities, crazy functions, etc.
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Importance Sampling

e Take more samples Iin important regions,
where the function is large

'Y r
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Class Objectives (Ch. 14) were:

e Sampling approach for solving the
rendering equation

e Monte Carlo integration
e Estimator and its variance
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Next Time...

e Monte Carlo ray tracing
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Homework

e Go over the next lecture slides before the
class

e Watch 2 top-tier papers/videos and submit
your summaries before every Mon. class

e Just one paragraph for each summary

Example:

Title: XXX XXXX XXXX

Abstract: this video is about accelerating the
performance of ray tracing. To achieve its goal, they
design a new technique for reordering rays, since by

doing so, they can improve the ray coherence and thus
improve the overall performance.

KAIST



Any Questions?

e Submit four times in Sep./Oct.

e Come up with one question on what we
have discussed in the class and submit at
the end of the class

e 1 for typical questions

e 2 for questions that have some thoughts or
surprise me
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