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Class Objectives

e Sampling approach for solving the
rendering equation

e Monte Carlo integration
e Estimator and its variance
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Radiance Evaluation

e Fundamental problem in GI algorithm

e Evaluate radiance at a given surface point in a
given direction

e Invariance defines radiance everywhere else
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Radiance Evaluation

.. find paths between sources and surfaces to be shaded
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Why Monte Carlo?

e Radiace Is hard to evaluate

Lix < ¥)

L(x—0)

oy From kavita’s slides

e Sample many paths
e Integrate over all incoming directions

e Analytical integration is difficult
e Need numerical techniques

e
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Monte Carlo Integration

e Numerical tool to evaluate integrals
e Use sampling

e Stochastic errors

e Unbiased
e On average, we get the right answer
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Numerical Integration

« A one-dimensional integral:
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Deterministic Integration

« Quadrature rules:
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Monte Carlo Integration

Primary estimator:
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Monte Carlo Integration

Primary estimator:

Unbiased estimator!
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Monte Carlo Integration

Primary estimator:

Unbiased estimator!
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Monte Carlo Integration: Error

Variance of the estimator —» a measure of
the stochastic error

)

Consider p(x) for estimate
We will study it as importance sampling later
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More samples

Secondary estimator

Generate N random samples x,

Estumator:

Variance

= Kavita Bala, Computer Su:%n ce, Cornell University



Monte Carlo Integration

+ Expected value of estimator

—on ‘average’ get right result: unbiased

« Standard deviation o 1S a measure of the
stochastic error

& Kavita Bala, Computer Science, Cornell University



MC Integration - Example

— Integral

_ Uniform sampling |1 ;

— Samples : e /

X, = .41 <[==1.44
X, = .02 <I>=0.96

Xy = .38 <[>=10.75
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MC Integration - Example

e Integral

k] .1|

e \Variance
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MC Integration: 2D

« Primary estimator:

= Kavita Bala, Computer Science, Cornell University



MC Integration: 2D

» Secondary estimator:
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Monte Carlo Integration - 2D

 MC Integration works well for higher
dimensions

« Unlike quadrature
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Advantages of MC

e Convergence rate of O(%)

e Simple
e Sampling
e Point evaluation

e General
e Works for high dimensions
e Deals with discontinuities, crazy functions, etc.
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Importance Sampling

e Take more samples in important regions,
where the function is large

KAIST



22

Class Objectives were:

e Sampling approach for solving the
rendering equation

e Monte Carlo integration
e Estimator and its variance
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Next Time...

e Monte Carlo ray tracing
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Homework

e Go over the next lecture slides before the
class

e Watch 2 SI1G/13D/HPG videos and submit
your summaries every Tue. class

e Just one paragraph for each summary

Example:

Title: XXX XXXX XXXX

Abstract: this video is about accelerating the
performance of ray tracing. To achieve its goal, they
design a new technique for reordering rays, since by

doing so, they can improve the ray coherence and thus
improve the overall performance.
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Any Questions?

e Submit four times in Sep./Oct.

e Come up with one guestion on what we
have discussed In the class and submit at
the end of the class

e 1 for typical questions

e 2 for questions that have some thoughts or
surprise me
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