CS482: Monte Carol Integration

Sung-Eui Yoon (윤성의)

http://sglab.kaist.ac.kr/~sungeui/ICG

Class Objectives

- Sampling approach for solving the rendering equation
 - Monte Carlo integration
 - Estimator and its variance

Radiance Evaluation

- Fundamental problem in GI algorithm
 - Evaluate radiance at a given surface point in a given direction
 - Invariance defines radiance everywhere else

Kavita Bala, Computer Science, Cornell University

Radiance Evaluation

... find paths between sources and surfaces to be shaded

Why Monte Carlo?

Radiace is hard to evaluate

From kavita's slides

- Sample many paths
 - Integrate over all incoming directions
- Analytical integration is difficult
 - Need numerical techniques

- Numerical tool to evaluate integrals
 - Use sampling
- Stochastic errors
- Unbiased
 - On average, we get the right answer

Numerical Integration

A one-dimensional integral:

$$I = \int_{a}^{b} f(x) dx$$

Deterministic Integration

Quadrature rules:

$$I = \int_{a}^{b} f(x) dx$$
$$\approx \sum_{i=1}^{N} w_{i} f(x_{i})$$

Primary estimator:

$$I = \int_{a}^{b} f(x) dx$$

$$I_{prim} = f(\overline{x})$$

Primary estimator:

$$I = \int_{a}^{b} f(x) dx$$

$$I_{prim} = f(\overline{x})$$

$$E(I_{prim}) = \int_{0}^{1} f(x)p(x)dx = \int_{0}^{1} f(x)1dx = I$$

Unbiased estimator!

Savita Bala, Computer Science, Cornell University

Primary estimator:

$$I = \int_{a}^{b} f(x) dx$$

$$I_{prim} = f(x_s)(b-a)$$

$$E(I_{prim}) = \int_{a}^{b} f(x)(b-a)p(x)dx = \int_{a}^{b} f(x)(b-a)\frac{1}{(b-a)}dx = I$$

Unbiased estimator!

Kavita Bala, Computer Science, Cornell University

Monte Carlo Integration: Error

Variance of the estimator → a measure of the stochastic error

$$\sigma_{prim}^2 = \int_a^b \left[\frac{f(x)}{p(x)} - I \right]^2 p(x) dx$$

- Consider p(x) for estimate
- We will study it as importance sampling later

More samples

Secondary estimator

Generate N random samples x,

Estimator:
$$\langle I \rangle = I_{\text{sec}} = \frac{1}{N} \sum_{i=1}^{N} f(\overline{x}_i)$$

Variance
$$\sigma_{\rm sec}^2 = \sigma_{\it prim}^2 \, / \, N$$

Expected value of estimator

$$E[\langle I \rangle] = E[\frac{1}{N} \sum_{i}^{N} \frac{f(x_{i})}{p(x_{i})}] = \frac{1}{N} \int (\sum_{i}^{N} \frac{f(x_{i})}{p(x_{i})}) p(x) dx$$
$$= \frac{1}{N} \sum_{i}^{N} \int (\frac{f(x)}{p(x)}) p(x) dx$$
$$= \frac{N}{N} \int f(x) dx = I$$

- on 'average' get right result: unbiased
- Standard deviation σ is a measure of the stochastic error

$$\sigma^2 = \frac{1}{N} \int_a^b \left[\frac{f(x)}{p(x)} - I \right]^2 p(x) dx$$

MC Integration - Example

- Integral
$$I = \int_{0}^{1} 5x^4 dx = 1$$

Uniform sampling

– Samples :

$$x_1 = .86$$

$$<$$
I $> = 2.74$

$$x_2 = .41$$

$$<$$
I $> = 1.44$

$$x_3 = .02$$

$$<$$
I $> = 0.96$

$$x_4 = .38$$

$$<$$
I $> = 0.75$

MC Integration - Example

Integral

$$I = \int_{0}^{1} 5x^{4} dx = 1$$

Variance

MC Integration: 2D

Primary estimator:

$$\overline{I}_{prim} = \frac{f(\overline{x}, \overline{y})}{p(\overline{x}, \overline{y})}$$

MC Integration: 2D

Secondary estimator:

$$I_{\text{sec}} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(\overline{x}_i, \overline{y}_i)}{p(\overline{x}_i, \overline{y}_i)}$$

- MC Integration works well for higher dimensions
- Unlike quadrature

$$I = \int_{a}^{b} \int_{c}^{d} f(x, y) dx dy$$

$$\langle I \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i, y_i)}{p(x_i, y_i)}$$

Advantages of MC

- Convergence rate of $O(\frac{1}{\sqrt{N}})$
- Simple
 - Sampling
 - Point evaluation
- General
 - Works for high dimensions
 - Deals with discontinuities, crazy functions, etc.

Importance Sampling

 Take more samples in important regions, where the function is large

Class Objectives were:

- Sampling approach for solving the rendering equation
 - Monte Carlo integration
 - Estimator and its variance

Next Time...

Monte Carlo ray tracing

Homework

- Go over the next lecture slides before the class
- Watch 2 SIG/I3D/HPG videos and submit your summaries every Tue. class
 - Just one paragraph for each summary

Example:

Title: XXX XXXX XXXX

Abstract: this video is about accelerating the performance of ray tracing. To achieve its goal, they design a new technique for reordering rays, since by doing so, they can improve the ray coherence and thus improve the overall performance.

Any Questions?

- Submit four times in Sep./Oct.
- Come up with one question on what we have discussed in the class and submit at the end of the class
 - 1 for typical questions
 - 2 for questions that have some thoughts or surprise me

