CS482: Monte Carlo Ray Tracing: Sung-Eui Yoon (윤성의) http://sglab.kaist.ac.kr/~sungeui/ICG #### **Class Objectives** - Understand a basic structure of Monte Carlo ray tracing - Russian roulette for its termination - Path tracing ## Rendering Equation #### **Evaluation** - To compute $L(x \to \Theta)$: - Check $L_e(x \to \Theta)$ • Evaluate $L_r(x \to \Theta)$ $$L_r(x \to \Theta) = \int_{\Psi} L(x \leftarrow \Psi) f_r(x, \Psi \to \Theta) \cos \theta_x dw_{\Psi}$$ #### **Evaluation** Use Monte Carlo Generate random directions on hemisphere Ψ using pdf p(Ψ) $$L_r(x \to \Theta) = \int_{\Psi} L(x \leftarrow \Psi) f_r(x, \Psi \to \Theta) \cos \theta_x dw_{\Psi}$$ $$\hat{L}_r(x \to \Theta) = \frac{1}{N} \sum_{i=1}^{N} \frac{L(x \leftarrow \Psi_i) f_r(x, \Psi_i \to \Theta) \cos \theta_x}{p(\Psi_i)}$$ • How about $L(x \leftarrow \Psi_i)$? #### **Evaluation** - How about $L(x \leftarrow \Psi_i)$? - Perform ray casting backward - Compute radiance from those visible points to x - Assume reciprocity - Recursively perform the process - Each additional bounce supports one more indirect illumination #### When to end recursion? From kavita's slides - Contributions of further light bounces become less significant - Max recursion - Some threshold for radiance value - If we just ignore them, estimators will be biased #### Russian Roulette #### Integral $$I = \int_{0}^{1} f(x)dx = \int_{0}^{1} \frac{f(x)}{P} P dx = \int_{0}^{P} \frac{f(y/P)}{P} dy$$ #### Estimator $$\langle I_{roulette} \rangle = \begin{cases} \frac{f(x_i)}{P} & \text{if } x_i \leq P, \\ 0 & \text{if } x_i > P. \end{cases}$$ Variance $$\sigma_{roulette} > \sigma$$ #### Russian Roulette - Pick absorption probability, a = 1-P - Recursion is terminated - 1- a, i.e., P, is commonly to be equal to the reflectance of the material of the surface - Darker surface absorbs more paths ### Algorithm so far - Shoot primary rays through each pixel - Shoot indirect rays, sampled over hemisphere - Terminate recursion using Russian Roulette ### **Pixel Anti-Aliasing** - Compute radiance only at the center of pixel - Produce jaggies - We want to evaluate using MC - Simple box filter - The averaging method ## **Stochastic Ray Tracing** - Parameters - Num. of starting ray per pixel - Num. of random rays for each surface point (branching factor) - Path tracing - Branching factor = 1 ### **Path Tracing** Pixel sampling + light source sampling folded into one method #### Algorithm so far - Shoot primary rays through each pixel - Shoot indirect rays, sampled over hemisphere - Path tracing shoots only 1 indirect ray - Terminate recursion using Russian Roulette #### **Performance** - Want better quality with smaller # of samples - Fewer samples/better performance - Quasi Monte Carlo: well-distributed samples - Adaptive sampling ## Some Example **Uniform sampling** (64 samples per pixel) **Adaptive sampling** Reference #### Importance Sampling $$L(x \to \Theta) = L_{\varepsilon}(x \to \Theta) + \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_x) \cdot d\omega_{\Psi}$$ Radiance from light sources + radiance from other surfaces #### Importance Sampling $$L(x \to \Theta) = L_e + L_{direct} + L_{indirect}$$ $$=L_e + \int_{\Omega_x} \mathbf{r} \cdot \cdot$$ So ... sample direct and indirect with separate MC integration ### Comparison From kavita's slides - With and without considering direct illumination - 16 samples / pixel # Rays per pixel 1 sample/ pixel 4 samples/ pixel 16 samples/ pixel 256 samples/ pixel @ Kavita Bala, Computer Science, Cornell University #### Direct Illumination $$L(x \to \Theta) = \int_{A_{\text{source}}} f_r(x, -\Psi \leftrightarrow \Theta) \cdot L(y \to \Psi) \cdot G(x, y) \cdot dA_y$$ $$G(x, y) = \frac{\cos(n_x, \Theta)\cos(n_y, \Psi)Vis(x, y)}{r_{xy}^2}$$ hemisphere integration area integration # Estimator for direct lighting Pick a point on the light's surface with pdf p(y) For N samples, direct light at point x is: $$E(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r L_{source}}{T_{x \overline{y}_i}^2} \frac{\cos \theta_x \cos \theta_{\overline{y}_i}}{r_{x \overline{y}_i}^2} Vis(x, \overline{y}_i)}{p(\overline{y}_i)}$$ # Generating direct paths - Pick surface points y_i on light source - Evaluate direct illumination integral $$\langle L(x \to \Theta) \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r(...)L(...)G(x, y_i)}{p(y_i)}$$ # PDF for sampling light Uniform $$p(y) = \frac{1}{Area_{source}}$$ - Pick a point uniformly over light's area - Can stratify samples Estimator: $$E(x) = \frac{Area_{source}}{N} \sum_{i=1}^{N} f_r L_{source} \frac{\cos \theta_x \cos \theta_{\overline{y}_i}}{r_{x\overline{y}_i}^2} Vis(x, \overline{y}_i)$$ # More points ... $E(x) = \frac{Area_{source}}{N} \sum_{i=1}^{N} f_r L_{source} \frac{\cos \theta_x \cos \theta_{\overline{y}_i}}{r_{x\overline{y}_i}^2} Vis(x, \overline{y}_i)$ ### Even more points ... $E(x) = \frac{Area_{source}}{N} \sum_{i=1}^{N} f_r L_{source} \frac{\cos \theta_x \cos \theta_{\overline{y}_i}}{r_{x\overline{y}_i}^2} Vis(x, \overline{y}_i)$ #### Bidirectional Path Tracing Or paths generated from both camera and source at the same time ...! Connect endpoints to compute final contribution S Kavita Bala, Computer Science, Cornell University valid path © Kavita Bala, Computer Science, Cornell University small perturbations © Kavita Bala, Computer Science, Cornell University Accept mutations based on energy transport © Kavita Bala, Computer Science, Cornell University # Biased Methods: Irradiance Caching - Indirect changes smoothly. - Cache irradiance. ## **Irradiance Caching** - Indirect changes smoothly. - Cache irradiance. ## **Irradiance Caching** - Indirect changes smoothly. - Cache irradiance. - Interpolate them. #### **Biased Method: Photon Mapping** - 2 passes: - Shoot "photons" (light-rays) and record any hit-points - Shoot viewing rays and collect information from stored photons #### Pass 1: shoot photons Light path generated using MC techniques and Russian Roulette #### Store: - position - incoming direction - color - **—** ... #### **Stored Photons** Generate a few hundreds of thousands of photons ### Pass 2: viewing ray - Search for N closest photons (+check normal) - Assume these photons hit the point we're interested in Compute average radiance #### Result 350K photons for the caustic map #### Result 350K photons for the caustic map #### Class Objectives were: - Understand a basic structure of Monte Carlo ray tracing - Russian roulette for its termination - Path tracing #### **Summary** - Two basic building blocks - Radiometry - Rendering equation - MC integration - MC ray tracing - Unbiased methods - Biased methods ### **Summary** #### **Next Time...** Instant radiosity #### Homework - Go over the next lecture slides before the class - Watch 2 SIG/CVPR/ISMAR videos and submit your summaries every Tue. class - Just one paragraph for each summary - Any top-tier conf (e.g., ICRA) is okay #### **Example:** **Title: XXX XXXX XXXX** Abstract: this video is about accelerating the performance of ray tracing. To achieve its goal, they design a new technique for reordering rays, since by doing so, they can improve the ray coherence and thus improve the overall performance. #### **Any Questions?** - Submit four times in Sep./Oct. - Come up with one question on what we have discussed in the class and submit at the end of the class - 1 for typical questions - 2 for questions that have some thoughts or surprise me