Applying Visibility Term between Clustered Sources to Improve Sound Source Clustering

Presenter: Andrew Kim

Original Paper: Interactive Sound Propagation and Rendering for Large Multi-Source Scenes

- Render large number of sounds in a complex scene at an interactive rate using:
 - 1. Acoustic Reciprocity for Spherical Sources
 - Backwards Ray Tracing Rays from listener to sound sources
 - ■Spherical sound source Allows smooth interpolation
 - **■2. Source Clustering**
 - Clustered when sound sources are far away from the listener
 - Clustered when sound sources are close to each other with no obstacles
 - 3. Hybrid Convolution Rendering

Source Clustering

- Sounds far away from the listener and are close to each other are 'clustered'
- Clustered sounds are treated as one spherical sound source

Source Clustering

- Implemented using "octree"
- For 'sources must be close together' criteria:
 - Sources are clustered if they are in the same node
- For 'sources must be far away from the listener' criteria:
 - Node is subdivided if sound sources in the node are too close to the listener

Image Source: https://developer.apple.com/documentation/gameplaykit/gkoctree

Source Clustering

- Clustering considers obstacles between the sound sources
- Rays are traced around the sound sources to see if the sources reside in the same acoustic space
- Given the number of rays that intersect, they are given visibility term v (ranging from 0 to 1).

Goal / Problems

Goal of the Project:

To implement the current clustering algorithm and increase simulation accuracy

- Found Problems:
 - If large sound source is partially occluded and also clustered, it may result in an inaccurate simulation result

Solutions

- Applying visibility term v during actual sound processing
 - Must path-find to check which sound source is further from the listener

Platform / Implementation

- Unreal Engine 4 + Steam Audio
 - Unreal Engine 4 for 3D Interactive Environment
 - Steam Audio for Sound Propagation
 - Geometric propagation (reflection, diffuse...) using backwards ray tracing (from listener to sound sources) included in the package
 - Implement "Source Clustering" using Unreal Blueprint in Unreal Engine Script

Video

https://www.youtube.com/watch?v=ml_fw-ilt1Q&t=3s

Result...

- Implemented Octree
- Implemented Source Clustering
 - Clustered more aggressively as the listener goes far away from the sound sources
- Unable to actually combine sound sources due to engine limitations

Limitations

- Actual combining of clustered sound sources was impossible due to limitations of the engine
- Even if successfully implemented, considering visibility term may not have made much difference
 - The volume of sound sources are already small enough when they are clustered, making them indistinguishable