Gradient-Domain Photon Density Estimation

Binh-Son Hua Adrien Gruson Derek Nowrouzezahrai Toshiya Hachisuka

Presentor: Min-Gi Lim

Summary of Previous Presentation

Interactive Sound Propagation and Rendering for Large Multi-Source Scenes

- A paper for rendering large number of sounds in a complex scene at an interactive rate using:
- 1. Acoustic Reciprocity for Spherical Sources
 - Backwards Ray Tracing: Rays from listener to sound sources
 - Spherical sound source : Allows smooth interpolation
- 2. Source Clustering
 - Clustered when sound sources are far away from the listener
- Clustered when sound sources are close to each other with no obstacles
- 3. Hybrid Convolution Rendering

Table of Contents

- Backgrounds
- Problem & Goal
- 3. Gradient-domain Photon Density Estimation
- 4. Results
- 5. Limitations
- 6. Conclusion

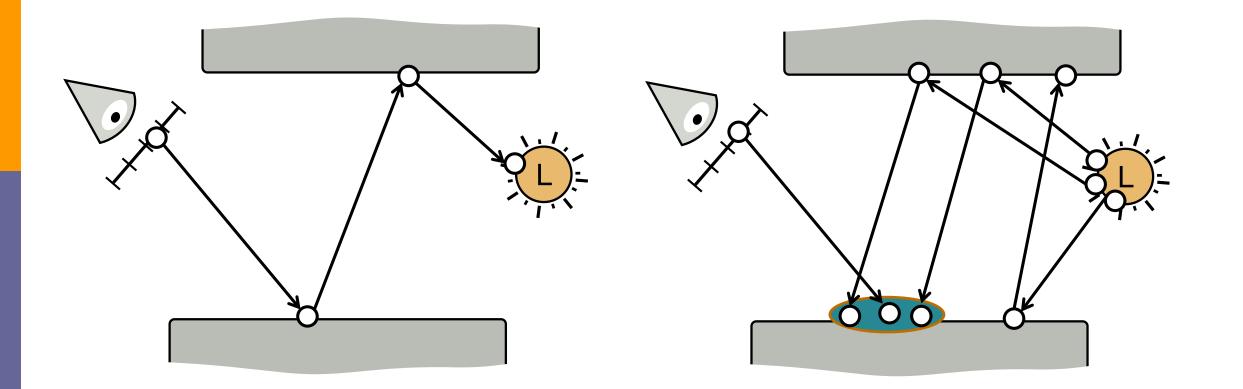
Backgrounds

Classical Rendering

Classical Rendering

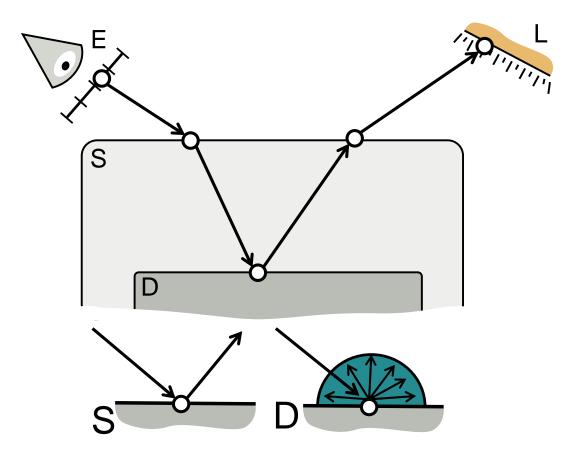
Path-based rendering techniques (i.e Path tracing ...)

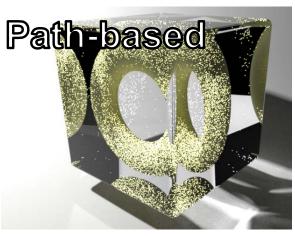
Density-based rendering techniques (i.e SPPM [Hachisuka et al. 2008]...)

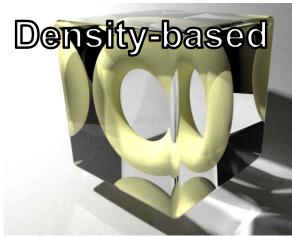


Classical Rendering

Path-based techniques are not robust to SDS Light Tranport







Several Monte Carlo light transport techniques aim to adaptively sample light transport "Where it matters"

We focus on the finite differences of path throughput between pixels.

Horizontal Difference

Vertical Difference

Poisson Solver

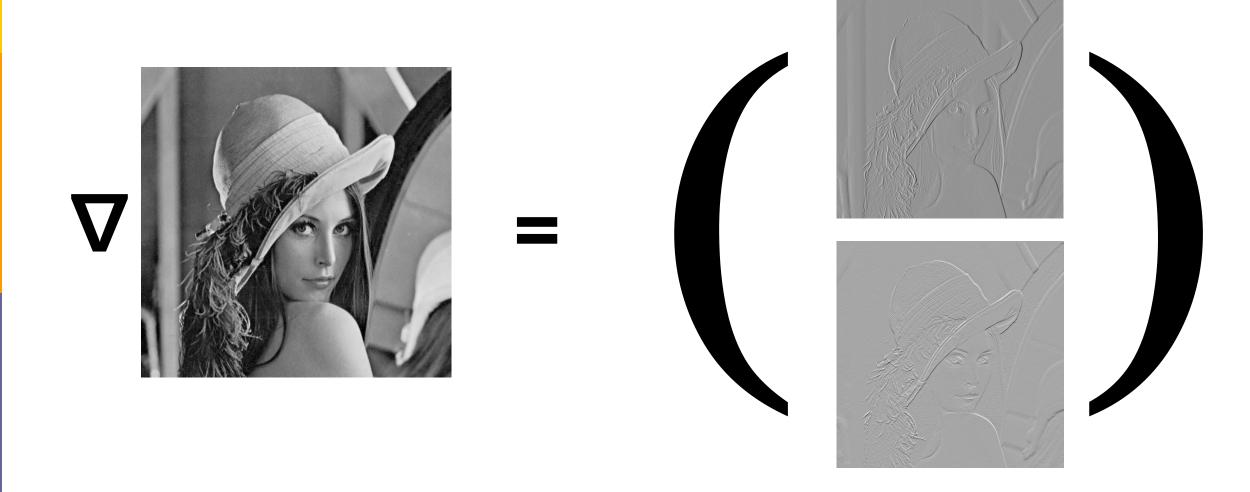
Final Image

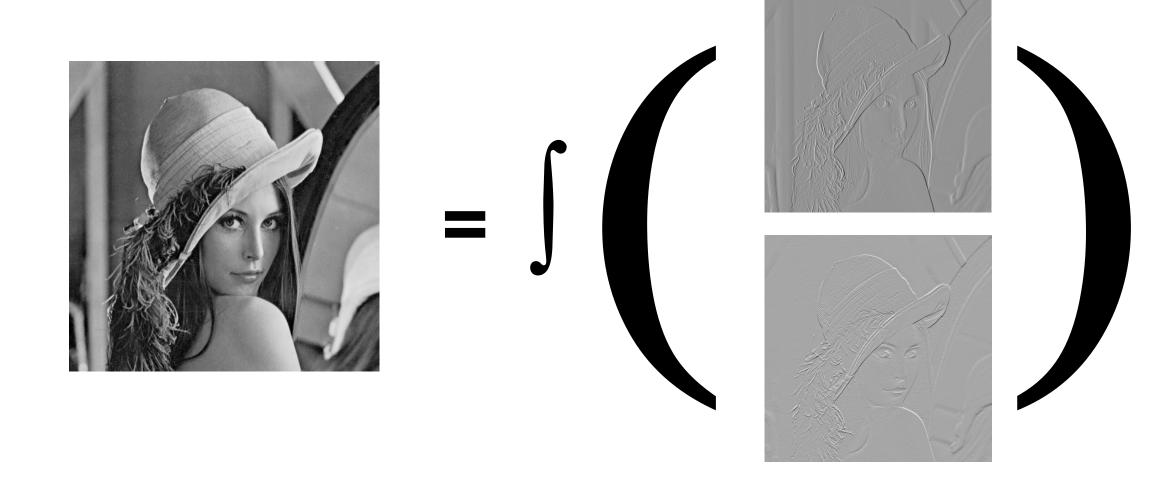
$$I = \arg \min \|D_x I - G_x\|_p + \|D_y I - G_y\|_p + \lambda \|I - I_0\|_p$$

I: final image

Gx, Gy: horizontal and vertical gradients

Dx, Dy: 1D convolution operators that compute finite differences along axes





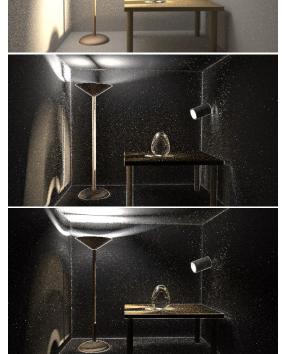
Classical rendering

Primal-domain (i.e Path tracing)

Gradients

-Horizontal

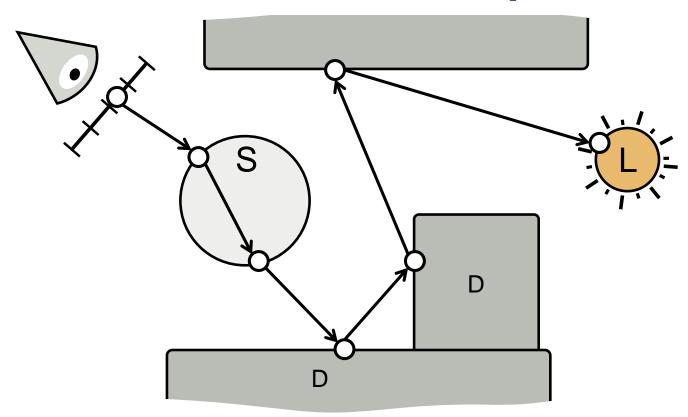
Vertical



Poisson reconstruction

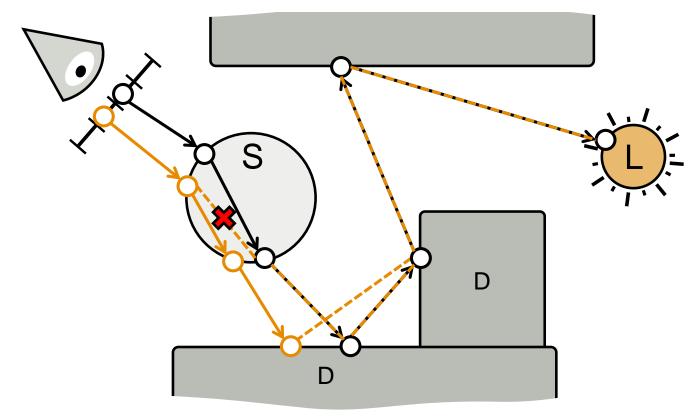
Shift mapping: exploit coherency to reduce noise in gradients

1) Generate the base path



Shift mapping: exploit coherency to reduce noise in gradients

2) Generate the shift paths through neighbor pixel



Problem & Goal

Problem & Goal

- Gradient-domain Metropolis light transport [Lehtinen et al. 2013]:
 - (+) Adaptive density (-) Markov chain MC
- Gradient-domain path tracing, [Kettunen et al. 2015]
 - (+) Simple (-) No adaptive sampling
- Gradient-domain bi-directional path tracing [Manzi et al. 2015]
 - (+) More robust (-) More costly
- They are all path-based methods!

Problem & Goal

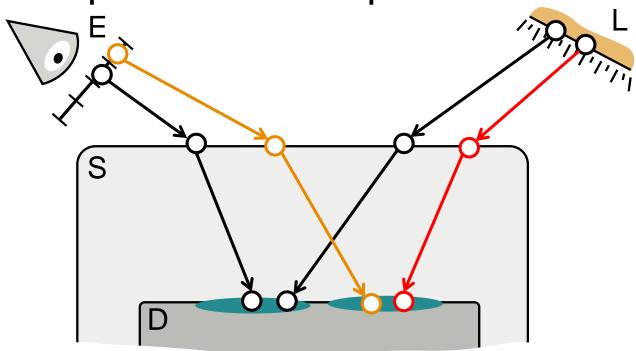
- Current gradient-domain rendering is path-based
 - = Problems with SDS paths

Our goal : is to use photon density estimation as the primal technique and compute gradient information

Hybrid shift mapping

Photon density estimation:

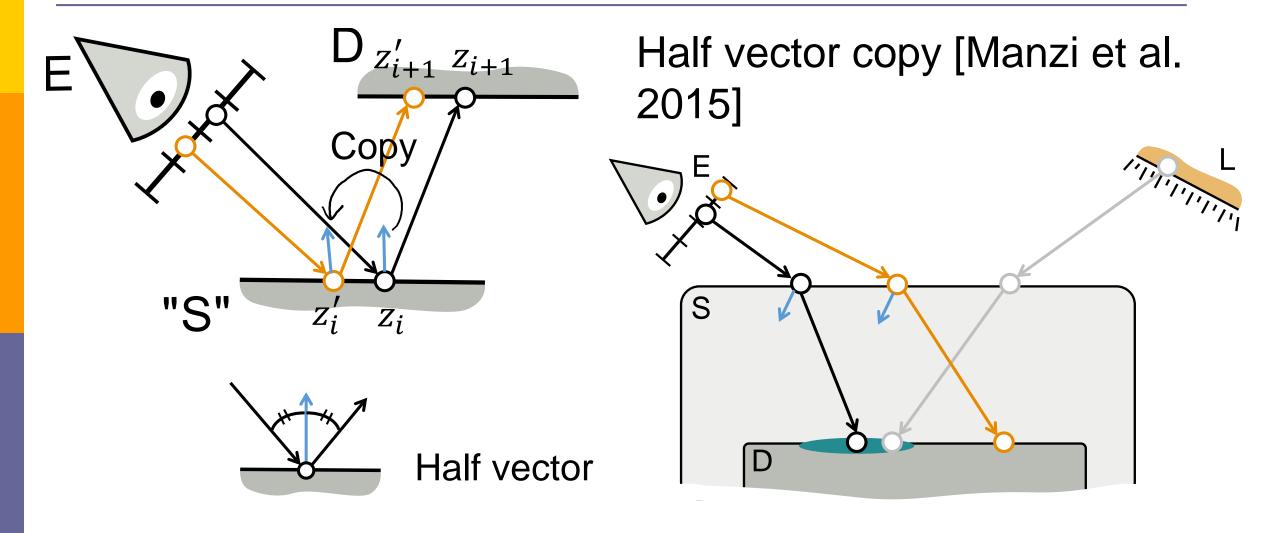
Two independent paths that compose the base path



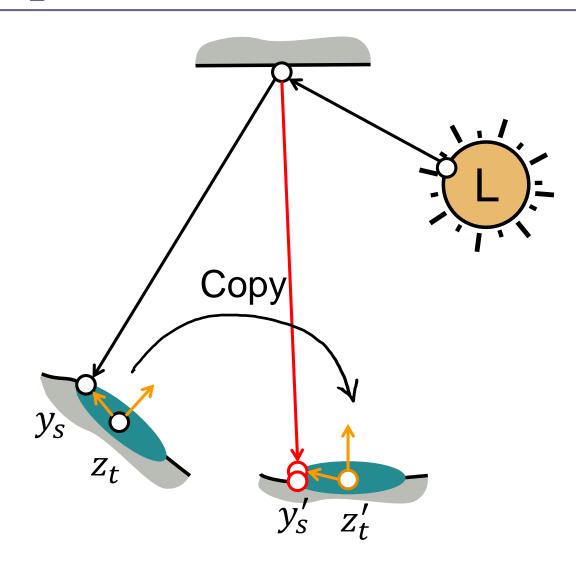
How to define a proper shift operator?

Gradient-domain Photon Density Estimation

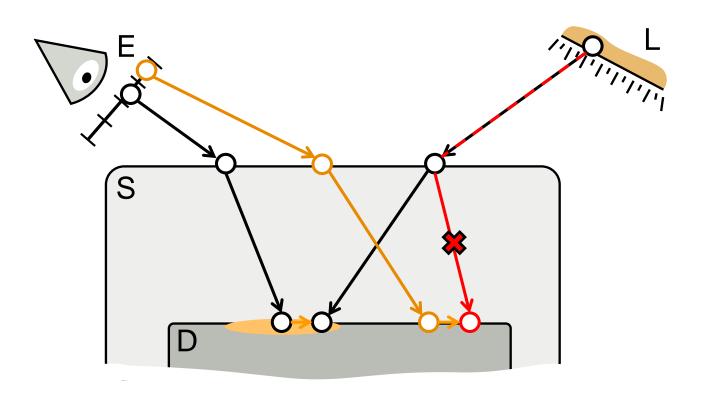
Step 1: Shift sensor path



Step 2: Shift photon location

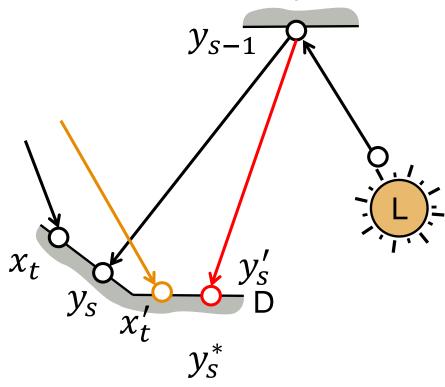


Step 3: Shift the rest of the light path

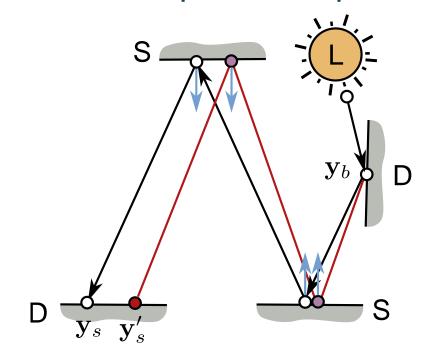


Step 3: Shift the rest of the light path

Case 1: Diffuse parent

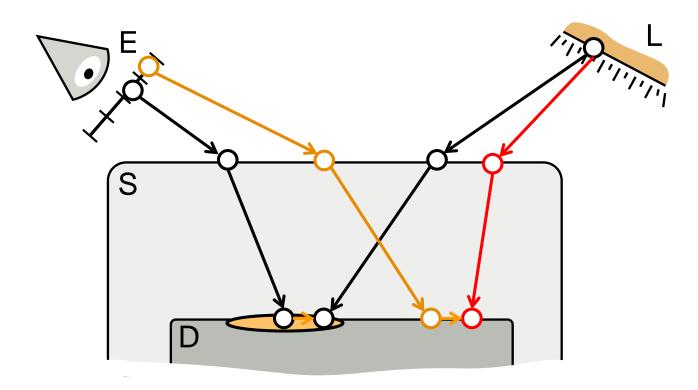


Case 2: "Specular" parent



Find a valid light path using Manifold Exploration [Jakob et al. 2012].

Finish



Jacobian: See the paper

 $w(\mathbf{x}) = \frac{p(\mathbf{y})p(\mathbf{z})}{p(\mathbf{v})p(\mathbf{z}) + p(T(\mathbf{v}))p(T(\mathbf{z}))|T'(\mathbf{v})T'(\mathbf{z})|},$

$$I_j^i = \int_{\mathcal{P}} h_i(\mathbf{x}) f(T(\mathbf{x})) \left| \frac{dT(\mathbf{x})}{d\mathbf{x}} \right| d\mathbf{x},$$

$$J = J_{\omega} \left[\frac{G(\mathbf{z}_{i}, \mathbf{z}_{i+1})}{G(\mathbf{z}'_{i}, \mathbf{z}'_{i+1})} \right] \left[\frac{\cos(\mathbf{n}'_{i}, \mathbf{z}'_{i} \to \mathbf{z}'_{i+1})}{\cos(\mathbf{n}_{i}, \mathbf{z}_{i} \to \mathbf{z}_{i+1})} \right], \qquad J = \left| \frac{\partial \mathbf{y}'_{b+1}}{\partial \mathbf{y}_{b+1}} \right| = \left| \frac{\partial \mathbf{y}'_{b+1}}{\partial \mathbf{y}'_{s}} \right| \left| \frac{\partial \mathbf{y}'_{s}}{\partial \mathbf{y}_{s}} \right| \left| \frac{\partial \mathbf{y}_{s}}{\partial \mathbf{y}_{b}} \right|,$$

$$\left| \frac{\partial \mathbf{y}'_{s}}{\partial \mathbf{y}_{s}} \right| = \left| \frac{\partial \mathbf{y}'_{b+1}}{\partial \mathbf{y}_{s}} \right| = \frac{G(\mathbf{y}_{s-1}, \mathbf{y}'_{s})}{G(\mathbf{y}_{s-1}, \mathbf{y}'_{s})}, \qquad \left| \frac{\partial \mathbf{y}_{b+1}}{\partial \mathbf{y}_{s}} \right| = \frac{G(\mathbf{y}_{b}, \mathbf{y}_{b+1}, \dots, \mathbf{y}_{s})}{G(\mathbf{y}_{b}, \mathbf{y}_{b+1})},$$

$$J = \left| \frac{\partial [\mathbf{y}'_{b+1} \dots \mathbf{y}'_{s}]}{\partial [\mathbf{y}_{b+1} \dots \mathbf{y}'_{s}]} \right| = \left| \frac{\partial [\mathbf{y}'_{b+1} \dots \mathbf{y}'_{s}]}{\partial [\mathbf{o}'_{b+1} \dots \mathbf{y}'_{s}]} \right| \left| \frac{\partial [\mathbf{o}'_{b+1} \dots \mathbf{y}'_{s}]}{\partial [\mathbf{y}_{b+1} \dots \mathbf{y}_{s}]} \right|$$

$$J = \left| \frac{\partial [\mathbf{y}'_{b+1} \dots \mathbf{y}'_{s}]}{\partial [\mathbf{y}_{b+1} \dots \mathbf{y}'_{s}]} \right| \left| \frac{\partial [\mathbf{o}'_{b+1} \dots \mathbf{y}'_{s}]}{\partial [\mathbf{o}_{b+1} \dots \mathbf{y}'_{s}]} \right| \left| \frac{\partial [\mathbf{o}'_{b+1} \dots \mathbf{y}'_{s}]}{\partial [\mathbf{y}_{b+1} \dots \mathbf{y}'_{s}]} \right|$$

Gradient-domain density estimation

Consistent: Use same reduction scheme as SPPM

Primal-domain SPPM

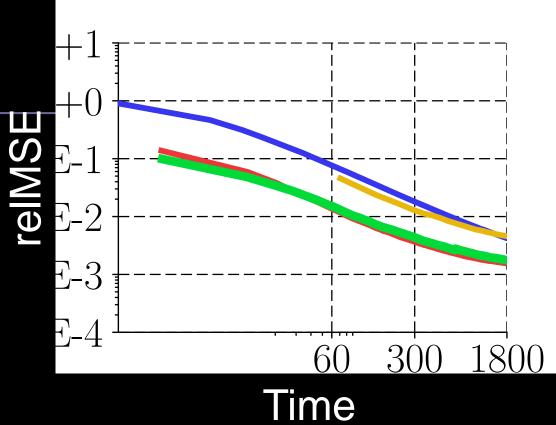
Gradients
Our shift
mapping

Poisson reconstruction

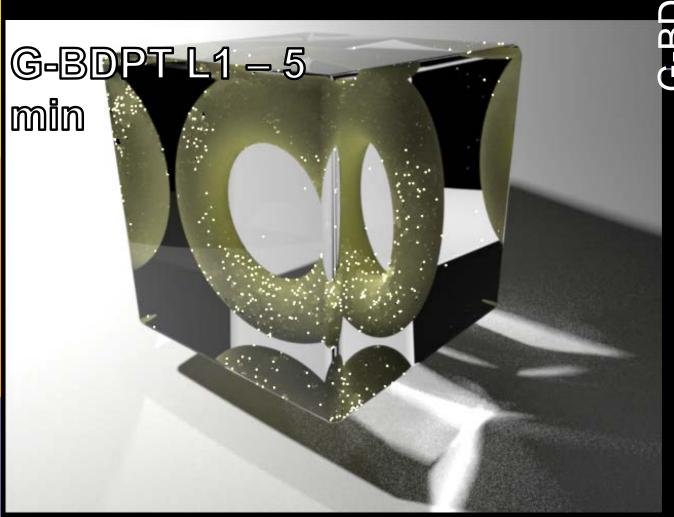
Results

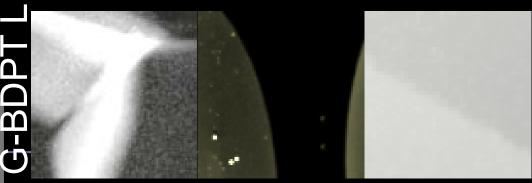
G-BDFI L

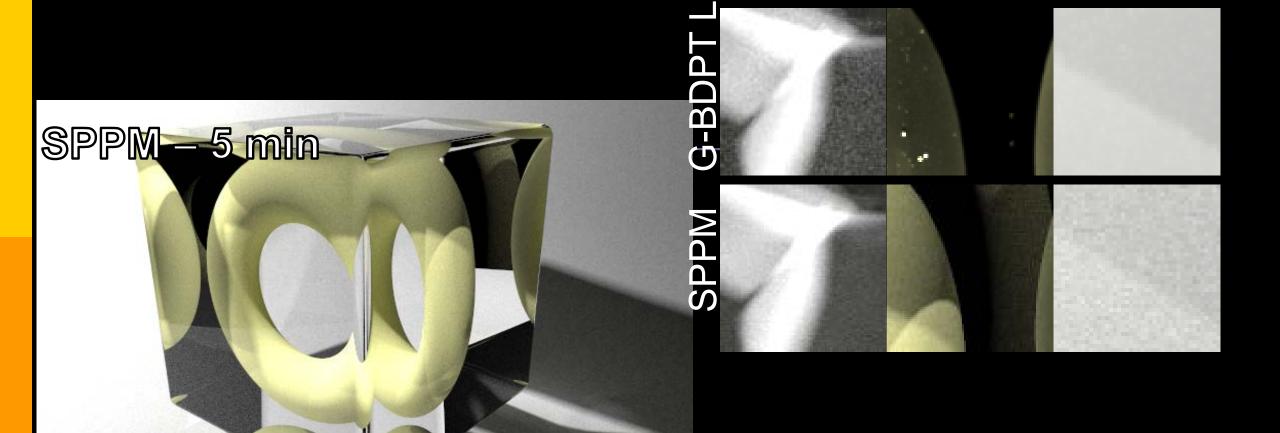
SPPM G-BDFI

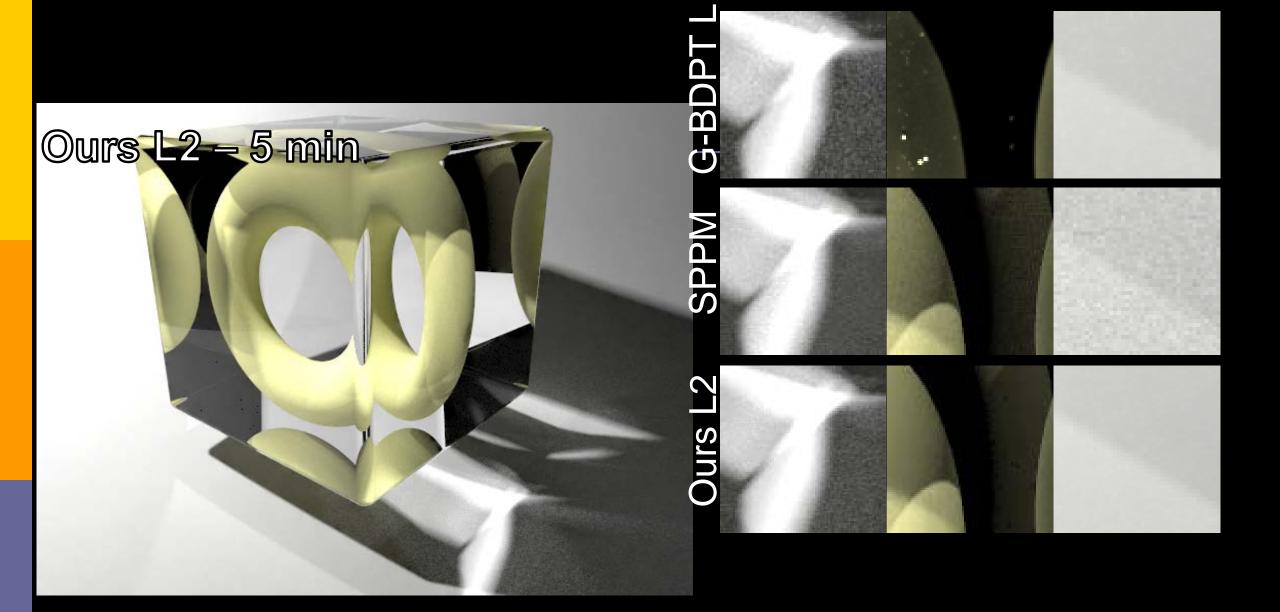


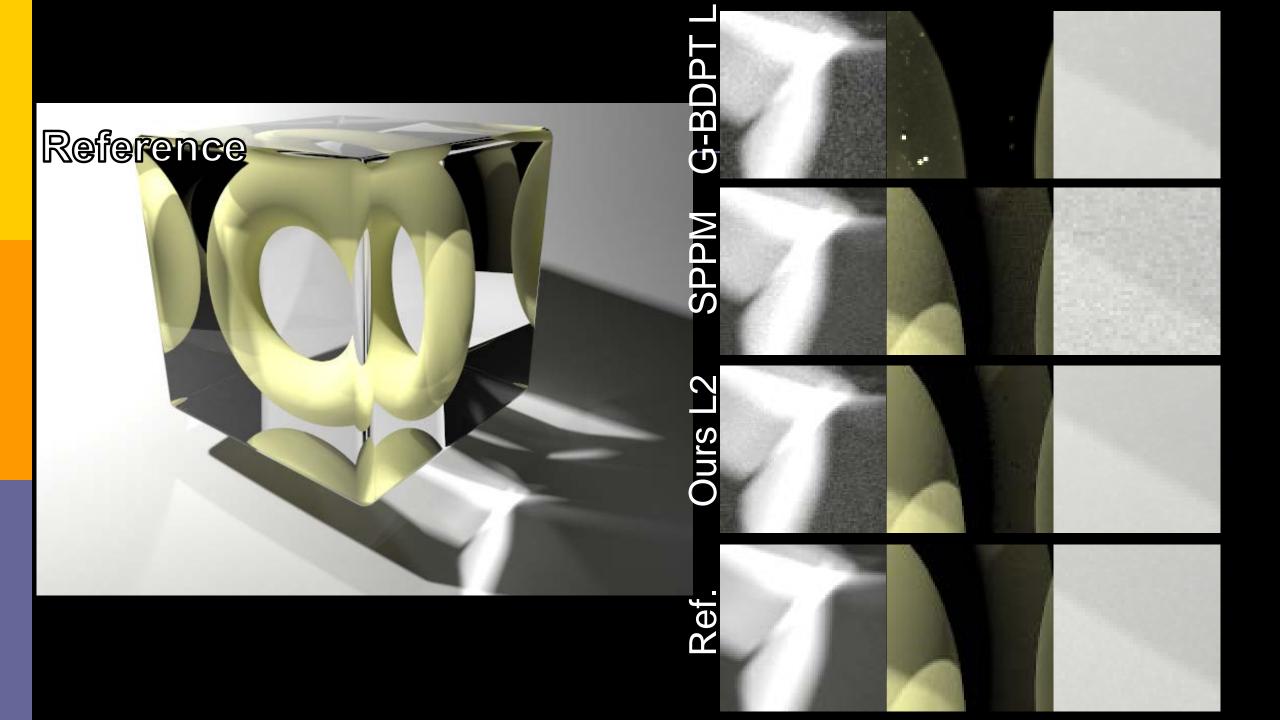
- G-BDPT L1
- SPPM
- Ours L1
- Ours L2

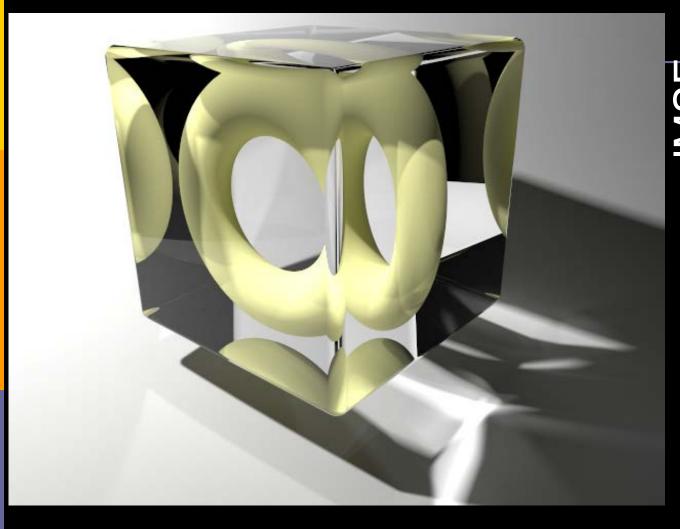


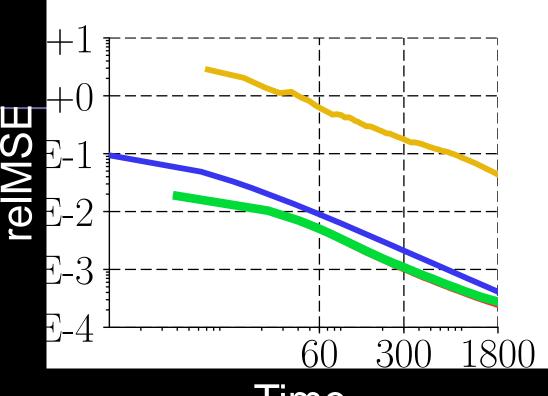








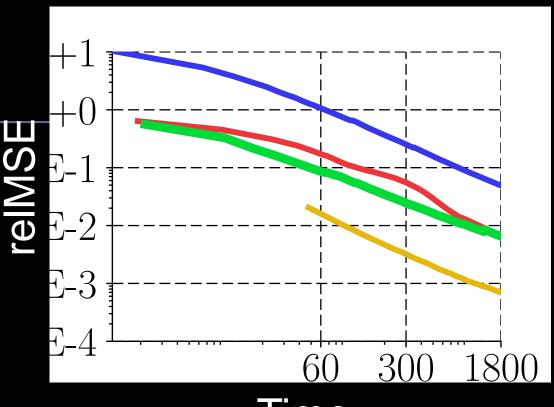




Time

- G-BDPT L1
- SPPM
- Ours L1
- Ours L2

Sponza



Time

- G-BDPT L1
- SPPM
- Ours L1
- Ours L2

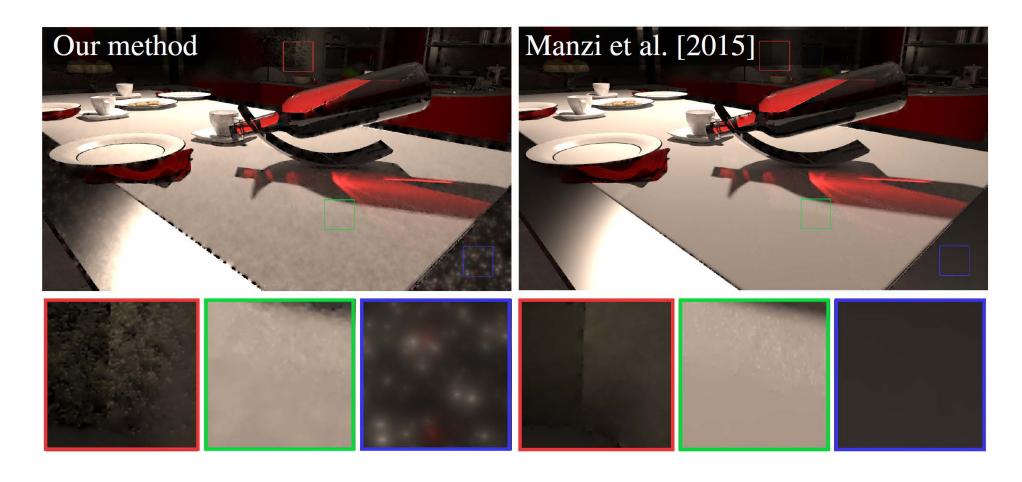
Limitations

Limitations

1) Gather photon on glossy surfaces

Limitations

2) Non uniform photon distribution



Conclusion

Conclusion

- The first gradient-domain photon density estimation technique.
 - New hybrid shift mapping
 - shifting sensor path
 - shifting photon path

- calculate gradient -> poisson problem -> get final image
- treat SDS path well

References

- 1. The slides of Gradient-Domain Photon Density Estimation
- The slides of State of the Art in Photon Density Estimation, SIGGRAPH Asia 2013 Course
 - http://users-cs.au.dk/toshiya/starpm2013a/

Thank you for Listening