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Class Objectives (Ch. 10)

● Understand a basic ray tracing

● Know its acceleration data structure and  
how to use it

● Rendering book
https://sgvr.kaist.ac.kr/~sungeui/render/

https://sgvr.kaist.ac.kr/~sungeui/render/
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The Classic Rendering Pipeline
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Why we are using rasterization?

● Efficiency

● Reasonably quality
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Fermi GPU Architecture

16 SM (streaming processors)

512 CUDA cores

Memory interfaces
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Turing Architecture, 2018

● Aims to combine shade, compute, ray 
tracing, and AI
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Ampere Architecture, 2020

● More cores, faster computation than Turing 
Architecture
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But what about other visual 
cues?

● Lighting
● Shadows

● Shading: glossy, transparency

● Color bleeding, etc

from Henrik’s homepage
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Recursive Ray Casting

● Gained popularity in when
Turner Whitted (1980)
recognized that recursive 
ray casting could be used
for global illumination 
effects 
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Ray Casting and Ray Tracing

● Trace rays from eye into scene
● Backward ray tracing

● Ray casting used to compute visibility at 
the eye

● Perform ray tracing for arbitrary rays 
needed for shading
● Reflections

● Refraction and transparency

● Shadows
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● Rays are cast from the eye point through 
each pixel in the image

Basic Algorithms
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Shadows

● Cast ray from the intersection point to each 
light source
● Shadow rays

Used 3ds Max
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Reflections

● If object specular, cast secondary reflected 
rays
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Refractions

● If object transparent, cast secondary 
refracted rays
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An Improved Illumination Model 
[Whitted 80]

● Phong illumination model

● Whitted model

● S and T are intensity of light from reflection 
and transmission rays

● Ks and Kt are specular and transmission 
coefficient
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OpenGL’s Illumination Model
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Ray Tree
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Acceleration Methods for Ray 
Tracing

● Rendering time for a ray tracer depends on the 
number of ray intersection tests per pixel

● The number of pixels X the number of primitives in the scene

● Early efforts focused on accelerating the ray-
object intersection tests

● Ray-triangle intersection tests

● More advanced methods required to make ray 
tracing practical

● Bounding volume hierarchies

● Spatial subdivision (e.g., kd-trees)
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Bounding Volumes

● Enclose complex objects within a simple-to-
intersect objects

● If the ray does not intersect the simple object then its contents 

can be ignored

● The likelihood that it will strike the object depends on how 

tightly the volume surrounds the object.

● Spheres are simple, but not tight

● Axis-aligned bounding boxes often better

● Can use nested or hierarchical bounding volumes
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Bounding Volumes

●Sphere [Whitted80]
● Cheap to compute

● Cheap test

● Potentially very bad fit

●Axis-Aligned Bounding Box
● Very cheap to compute

● Cheap test

● Tighter than sphere
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Bounding Volumes

● Oriented Bounding Box
● Fairly cheap to compute

● Fairly Cheap test

● Generally fairly tight

● Slabs / K-dops
● More expensive

to compute

● Fairly cheap test

● Can be tighter than OBB
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Bounding Volume Hierarchy 
(BVH)

● Organize bounding volumes as a tree
● Choose a partitioning plane and distribute 

triangles into left and right nodes

● Each ray starts with the scene BV and 
traverses down through the hierarchy
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Test-Of-Time 2006 Award

RT-DEFORM: Interactive Ray Tracing 
of Dynamic Scenes using BVHs
Christian Lauterbach, Sung-eui Yoon, 
David Tuft, Dinesh Manocha

IEEE Interactive Ray Tracing, 2006
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Spatial Subdivision

Idea: Divide space in to subregions 

● Place objects within a subregion into a list 

● Only traverse the lists of subregions that the ray 
passes through 

● “Mailboxing” used to avoid multiple test with 
objects in multiple regions

● Many types

● Regular grid

● Octree

● BSP tree

● kd-tree



26

Classic Ray Tracing

● Gathering approach
● From lights, reflected, and refracted 

directions

● Pros of ray tracing

● Simple and improved realism over 

the rendering pipeline 

● Cons:
● Simple light model, material, and light propagation

● Not a complete solution

● Hard to accelerate with special-purpose H/W 
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History

● Problems with classic ray tracing
● Not realistic

● View-dependent

● Radiosity (1984)
● Global illumination in diffuse scenes

● Monte Carlo ray tracing (1986)
● Global illumination for any environment
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Interactive Ray Tracing Kernels

● OptiX, Nvidia
● Utilize GPU computing architectures and CUDA

● Embree, Intel
● Utilize CPUs (multi-threaded and SIMD)
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PA1

● Get to know OptiX or 
Embree
● Download, and compile 

either one of those two 
methods

● Or just use precompiled ones

● Try out a few scenes

● Upload images of those 
scenes in KLMS

● Deadline
● Check the KLMS

● Note
● Easy one, but start early



30

Homework

● Go over the next lecture slides before the 
class

● Watch 2 paper (or videos) and submit your 
summaries every Mon. class
● Just one paragraph for each summary

Example:

Title: XXX XXXX XXXX

Abstract: this video is about  accelerating the 

performance of ray tracing. To achieve its goal, they 

design a new technique for reordering rays, since by 

doing so, they can improve the ray coherence and thus 

improve the overall performance.
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Class Objectives were:

● Understand a basic ray tracing

● Know its acceleration data structure and  
how to use it
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Next Time

● Radiosity


