
CS482: 

Ray Tracing

Sung-Eui Yoon

(윤성의)

Course URL:

http://sglab.kaist.ac.kr/~sungeui/ICG/



2

Class Objectives (Ch. 10)

● Understand a basic ray tracing

● Know its acceleration data structure and  
how to use it

● Rendering book
https://sgvr.kaist.ac.kr/~sungeui/render/

https://sgvr.kaist.ac.kr/~sungeui/render/


3

The Classic Rendering Pipeline



4

Why we are using rasterization?

● Efficiency

● Reasonably quality



5

Fermi GPU Architecture

16 SM (streaming processors)

512 CUDA cores

Memory interfaces



6

Turing Architecture, 2018

● Aims to combine shade, compute, ray 
tracing, and AI



7

Ampere Architecture, 2020

● More cores, faster computation than Turing 
Architecture



8



9

But what about other visual 
cues?

● Lighting
● Shadows

● Shading: glossy, transparency

● Color bleeding, etc

from Henrik’s homepage



10

Recursive Ray Casting

● Gained popularity in when
Turner Whitted (1980)
recognized that recursive 
ray casting could be used
for global illumination 
effects 



11

Ray Casting and Ray Tracing

● Trace rays from eye into scene
● Backward ray tracing

● Ray casting used to compute visibility at 
the eye

● Perform ray tracing for arbitrary rays 
needed for shading
● Reflections

● Refraction and transparency

● Shadows



12

● Rays are cast from the eye point through 
each pixel in the image

Basic Algorithms



13

Shadows

● Cast ray from the intersection point to each 
light source
● Shadow rays

Used 3ds Max



14

Reflections

● If object specular, cast secondary reflected 
rays



15

Refractions

● If object transparent, cast secondary 
refracted rays



16

An Improved Illumination Model 
[Whitted 80]

● Phong illumination model

● Whitted model

● S and T are intensity of light from reflection 
and transmission rays

● Ks and Kt are specular and transmission 
coefficient


=

•+•+=
numLights

1j

nj
s
j
sj

j
d
j
d

j
a
j
ar ))RV(Ik)LN(IkI(kI sˆˆˆˆ

TkSk))LN(IkI(kI ts

numLights

1j
j

j
d
j
d

j
a
j
ar ++•+= 

=

ˆˆ



17

OpenGL’s Illumination Model


=

•+•+=
numLights

1j

nj
s
j
sj

j
d
j
d

j
a
j
ar ,0)))RVmax((Ik),0)LNmax((IkI(kI sˆˆˆˆ

From Wikipedia



18

Ray Tree

eye

s0

b

a

dc

f

e
s1

s2

eye

a bs0

e fs2 c bs1

R T

R R TT



19

Acceleration Methods for Ray 
Tracing

● Rendering time for a ray tracer depends on the 
number of ray intersection tests per pixel

● The number of pixels X the number of primitives in the scene

● Early efforts focused on accelerating the ray-
object intersection tests

● Ray-triangle intersection tests

● More advanced methods required to make ray 
tracing practical

● Bounding volume hierarchies

● Spatial subdivision (e.g., kd-trees)



20

Bounding Volumes

● Enclose complex objects within a simple-to-
intersect objects

● If the ray does not intersect the simple object then its contents 

can be ignored

● The likelihood that it will strike the object depends on how 

tightly the volume surrounds the object.

● Spheres are simple, but not tight

● Axis-aligned bounding boxes often better

● Can use nested or hierarchical bounding volumes



21

Bounding Volumes

●Sphere [Whitted80]
● Cheap to compute

● Cheap test

● Potentially very bad fit

●Axis-Aligned Bounding Box
● Very cheap to compute

● Cheap test

● Tighter than sphere



22

Bounding Volumes

● Oriented Bounding Box
● Fairly cheap to compute

● Fairly Cheap test

● Generally fairly tight

● Slabs / K-dops
● More expensive

to compute

● Fairly cheap test

● Can be tighter than OBB



23

Bounding Volume Hierarchy 
(BVH)

● Organize bounding volumes as a tree
● Choose a partitioning plane and distribute 

triangles into left and right nodes

● Each ray starts with the scene BV and 
traverses down through the hierarchy

r





















Test-Of-Time 2006 Award

RT-DEFORM: Interactive Ray Tracing 
of Dynamic Scenes using BVHs
Christian Lauterbach, Sung-eui Yoon, 
David Tuft, Dinesh Manocha

IEEE Interactive Ray Tracing, 2006



25

Spatial Subdivision

Idea: Divide space in to subregions 

● Place objects within a subregion into a list 

● Only traverse the lists of subregions that the ray 
passes through 

● “Mailboxing” used to avoid multiple test with 
objects in multiple regions

● Many types

● Regular grid

● Octree

● BSP tree

● kd-tree



26

Classic Ray Tracing

● Gathering approach
● From lights, reflected, and refracted 

directions

● Pros of ray tracing

● Simple and improved realism over 

the rendering pipeline 

● Cons:
● Simple light model, material, and light propagation

● Not a complete solution

● Hard to accelerate with special-purpose H/W 



27

History

● Problems with classic ray tracing
● Not realistic

● View-dependent

● Radiosity (1984)
● Global illumination in diffuse scenes

● Monte Carlo ray tracing (1986)
● Global illumination for any environment



28

Interactive Ray Tracing Kernels

● OptiX, Nvidia
● Utilize GPU computing architectures and CUDA

● Embree, Intel
● Utilize CPUs (multi-threaded and SIMD)



29

PA1

● Get to know OptiX or 
Embree
● Download, and compile 

either one of those two 
methods

● Or just use precompiled ones

● Try out a few scenes

● Upload images of those 
scenes in KLMS

● Deadline
● Check the KLMS

● Note
● Easy one, but start early



30

Homework

● Go over the next lecture slides before the 
class

● Watch 2 paper (or videos) and submit your 
summaries every Mon. class
● Just one paragraph for each summary

Example:

Title: XXX XXXX XXXX

Abstract: this video is about  accelerating the 

performance of ray tracing. To achieve its goal, they 

design a new technique for reordering rays, since by 

doing so, they can improve the ray coherence and thus 

improve the overall performance.



32

Class Objectives were:

● Understand a basic ray tracing

● Know its acceleration data structure and  
how to use it



33

Next Time

● Radiosity


