CS482: Radiosity

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/ICG

Class Objective (Ch. 11)

- Understand radiosity
 - Radiosity equation
 - Solving the equation

History

- Problems with classic ray tracing
 - Not realistic
 - View-dependent
- Radiosity (1984)
 - Global illumination in diffuse scenes
- Monte Carlo ray tracing (1986)
 - Global illumination for any environment

Radiosity

- Physically based method for diffuse environments
 - Support diffuse interactions, color bleeding, indirect lighting and penumbra
 - Account for very high percentage of total energy transfer
 - Finite element method

Key Idea #1: Diffuse Only

- Radiance independent of direction
 - Surface looks the same from any viewpoint
 - No specular reflection

Diffuse Surfaces

- Diffuse emitter
 - $L(x \rightarrow \Theta) = \text{constant over } \Theta$

- Diffuse reflector
 - Constant reflectivity

From kavita's slides

Key Idea #2: Constant Polygons

- Radiosity is an approximation
 - Due to discretization of scene into patches

Subdivide scene into small polygons

Constant Radiance Approximation

- Radiance is constant over a surface element
 - L(x) = constant over x

Radiosity Equation

 $Radiosity_i = Radiosity_{self,i} +$

 $\sum_{j=1}^{n} a_{j\to i} Radiosity_{j}$

Radiosity Equations

Radiosity for each polygon i

$$Radiosity_{1} = Radiosity_{self,1} + \sum_{j=1}^{N} a_{j\rightarrow 1} Radiosity_{j}$$

$$\vdots$$

$$Radiosity_{i} = Radiosity_{self,i} + \sum_{j=1}^{N} a_{j\rightarrow i} Radiosity_{j}$$

$$\vdots$$

$$Radiosity_{N} = Radiosity_{self,N} + \sum_{j=1}^{N} a_{j\rightarrow N} Radiosity_{j}$$

N equations and N unknown variables

Radiosity Algorithm

- Subdivide the scene in small polygons
- Compute a constant illumination value for each polygon
- Choose a viewpoint and display the visible polygon
 - Keep doing this process

From Donald Fong's slides

Radiosity Result

Theatre Scene

Compute Form Factors

$$F(j \to i) = \frac{1}{A_j} \int_{A_i} \int_{A_i} \frac{\cos \theta_x \cdot \cos \theta_y}{\pi \cdot r_{xy}^2} \cdot V(x, y) \cdot dA_y \cdot dA_x$$

Radiosity Equation

Radiosity for each polygon i

$$B_i = B_{e,i} + \rho_i \sum_j B_j F(i \to j)$$

Linear system

- B_i: radiosity of patch i (unknown)
- Bei : emission of patch i (known)
- $-\rho_1$: reflectivity of patch i (known)
- F(i→j): form-factor (coefficients of matrix)

Linear System of Radiosity

Known

Known

$$\begin{bmatrix} 1 - \rho_1 F(1 \to 1) & -\rho_1 F(1 \to 2) & \dots & -\rho_1 F(1 \to n) \\ \vdots & \vdots & \ddots & \vdots \\ -\rho_n F(n \to 1) & -\rho_n F(n \to 2) & \dots & 1 - \rho_n F(n \to n) \end{bmatrix} \begin{bmatrix} B_1 \\ \vdots \\ B_n \end{bmatrix} = \begin{bmatrix} B_{e,1} \\ \vdots \\ B_{e,n} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{h} \\ \mathbf{h} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{h} \\ \mathbf{h} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{h} \\ \mathbf{h} \end{bmatrix}$$

How to Solve Linear System

- Matrix inversion
 - Takes O(n³)
- Gather methods
 - Jacobi iteration
 - Gauss-Seidel
- Shooting
 - Southwell iteration

Iterative Approaches

- Jacobi iteration
 - Start with initial guess for energy distribution (light sources)
 - Update radiosity of all patches based on the previous guess

$$B_i = B_{e,i} + \rho_i \sum_j B_j F(i o j)$$
New values Old values

- Repeat until converged
- Guass-Seidel iteration
 - New values used immediately

Progress of Update Steps

Update step supports the light bounce

Multi-Resolution Approach

 A Rapid Hierarchical Radiosity Algorithm, Hanrahan, et al, SIGGRAPH 1991

 Refine triangles only if doing so improves the foam factor accuracy above a threshold

Block diagram of the form factor matrix

Hybrid and Multipass Methods

Ray tracing

- Good for specular and refractive indirect illumination
- View-dependent

Radiosity

- Good for diffuse
- Allows interactive rendering
- Does not scale well for massive models
- Hybrid methods
 - Combine both of them in a way

Instant Radiosity

- Use the concept of radiosity
- Map its functions to those of classic rendering pipeline
 - Utilize fast GPU
- Additional concepts
 - Virtual point lights
 - Shadow maps

Instant Radiosity

Class Objectives were:

- Understand radiosity
 - Radiosity equation
 - Solving the equation

Homework

- Go over the next lecture slides before the class
- Watch 2 paper videos and submit your summaries every Mon. class
 - Just one paragraph for each summary

Example:

Title: XXX XXXX XXXX

Abstract: this video is about accelerating the performance of ray tracing. To achieve its goal, they design a new technique for reordering rays, since by doing so, they can improve the ray coherence and thus improve the overall performance.

Next Time

Radiometry and rendering equation

