CS588 Midterm Project Presentation

Deepfake Retrieval Systems: Detecting Identity Fraud in Image Databases

Jumin Lee and Suhyeon Ha (T4) 2024. 05. 08.

Target Task

• Given an authentic image, our goal is to detect fake images pretending to depict the same person in database.

Results

Query

Introduction

Why it is important?
 : The rise of deepfake presents significant risks in misinformation, identity theft, and privacy invasion.

 Detecting deepfakes that impersonate a specific identity is critical for safeguarding individuals and society.

Introduction

Why it is important?

ID

- Arc2Face: A Foundation Model of Human Faces, arxiv 2024

Generated images with consistent ID

Introduction

- Why it is important?
- Arc2Face: A Foundation Model of Human Faces, arxiv 2024
 - : Introduce a large dataset of high-resolution facial images with consistent ID and intra-class variability, and an ID-conditioned face model trained on it, which:
- ✓ generates high-quality images <u>only</u>

 <u>its ArcFace embedding</u>
- ✓ offers superior ID similarity compared to existing models
- ✓ can be extended to different input modalities, e.g. <u>pose/expression</u>

- No existing work to <u>retrieve deepfakes of the query image</u>.
- A combination of face recognition and deepfake detection can be utilized.
 - Stage 1. Face retrieval
 - : Identify images that match the given identity.
 - Being unrecognized as someone's identity suggests its quality is doubtful.
 - ex) Variational Prototype Learning for Deep Face Recognition, CVPR 21
 - Stage 2. <u>Deepfake detection</u>
 - : Determine whether the identified **face images** have been manipulated.

Variational Prototype Learning for Deep Face Recognition, CVPR 2021
 : Propose a novel Variational Prototype Learning method which represents each class as a <u>distribution</u> instead of a <u>point</u> by using the margin-based softmax loss.

(a) Prototype Learning

(b) Variational Prototype Learning

- No existing work to <u>retrieve deepfakes of the query image</u>.
- A combination of face recognition and deepfake detection can be utilized.
 - Stage 1. Face retrieval
 - : Identify images that match the given identity.
 - Being unrecognized as someone's identity suggests its quality is doubtful.
 - ex) Variational Prototype Learning for Deep Face Recognition, CVPR 21
 - Stage 2. <u>Deepfake detection</u>
 - : Determine whether the identified **face images** have been manipulated.

- Prompt-guided inpainting can modify images while preserving their identities.
- (Stage 2. <u>Deepfake detection</u>) can't handle this issue.

- No existing work to <u>retrieve deepfakes of the guery image</u>.
- A combination of face recognition and forgery detection can be utilized.
 - Stage 1. Face retrieval
 - : Identify images that match the given identity.
 - Being unrecognized as someone's identity suggests its quality is doubtful.
 - ex) Variational Prototype Learning for Deep Face Recognition, CVPR 21
 - Stage 2. <u>Forgery detection</u>
 - : Determine whether the identified **arbitrary images** have been manipulated.
 - ex) Towards Universal Fake Image Detectors that Generalize Across Generative Models, CVPR 23

Towards Universal Fake Image Detectors that Generalize Across Generative Models, CVPR 23

- No training of real vs. fake classifiers
 - : The classification process should happen in a **feature space** which <u>has not been</u> <u>trained</u> to separate images from the two classes.

- Towards Universal Fake Image Detectors that Generalize Across Generative Models, CVPR 23
- Results

< Classification accuracy (averaged over real and fake images) >

Detection method	Variant	Generative Adversarial Networks						Deep	Guided	LDM			Glide			DALL-E	Total
		110	Cycle- GAN		Style- GAN		Star- GAN	fakes		200 steps	200 w/ CFG	100 steps	100 27	50 27	100 10		Avg.
Ours	NN, k = 1	99.58	94.70	86.95	80.24	96.67	98.84	80.9	68.76	89.56	68.99	89.51	86.44	88.02	87.27	77.52	82.30
	NN, $k=3$	99.58	95.04	87.63	80.55	96.94	98.77	83.05	70.02	90.37	70.17	90.57	87.84	89.34	88.78	79.29	83.28
	NN, $k=5$	99.60	94.32	88.23	80.60	97.00	98.90	83.85	70.55	90.89	70.97	91.01	88.42	90.07	89.60	80.19	83.72
	NN, $k=9$	99.54	93.49	88.63	80.75	97.11	98.97	84.5	71.06	91.29	72.02	91.29	89.05	90.67	90.08	81.47	84.25
	LC	100.0	98.50	94.50	82.00	99.50	97.00	66.60	70.03	94.19	73.76	94.36	79.07	79.85	78.14	86.78	81.38

Reproduce official code using a linear classifier

: Real Accuracy = 94%, **Fake Accuracy = 42%**, Average Accuracy = 68%

Related Work Analysis

Checked the performance of clip embedding for Face retrieval and Forgery detection.

Reproduce official code using a linear classifier

: Real Accuracy = 94%, **Fake Accuracy = 42%**, Average Accuracy = 68%

Related Work Analysis

- Checked the performance of clip embedding for Face retrieval and Forgery detection.
- We tried applying the model to another dataset (Celeb-DF).

Real Accuracy = 99%, Fake Accuracy = 1%, Average Accuracy = 11%

Related Work Analysis

- Show different pattern between 2 datasets.
- Deepfakes Dataset
 - Face retrieval 😭
 - Forgery detection 😐

- Celeb-DF Dataset
 - Face retrieval 😊
 - Forgery detection 😭

Challenges

- Performance of forgery detector highly depends on facial datasets.
- There is still room for improvement in forgery detection for both datasets.

→ Our goal is to improve <u>facial forgery detection</u> of UniDet for deepfake retrieval systems

Roles

- Jumin
 - Pre-process datasets and visualize embedding spaces (done)
 - Analyze the features of the cropped face and the whole image (~ May 18th)
- Suhyeon
 - Reproduce UniDet (done)
 - Analyze the given query image features (~ May 18th)
- Integrate cropped face and whole image features with query image features
 (~ May 30th)

Q&A

Thank you