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Target Task

* Given an authentic image, our goal is to detect fake images pretending to depict
the same person in database.

Real & fake images of multiple IDs
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Introduction

e Why itisimportant?
: The rise of deepfake presents significant risks in misinformation, identity theft,

and privacy invasion.

A

e Detecting deepfakes that impersonate a specific identity is critical for safeguarding

individuals and society. ’


http://www.youtube.com/watch?v=YclTT-CSGoU&t=31
http://www.youtube.com/watch?v=CDMVaQOvtxU

Introduction

e Why itisimportant?
- Arc2Face: A Foundation Model of Human Faces, arxiv 2024

Generated images with consistent ID



Introduction

e Why itisimportant?
- Arc2Face: A Foundation Model of Human Faces, arxiv 2024

: Introduce a large dataset of high-resolution facial images with consistent ID and

intra-class variability, and an ID-conditioned face model trained on it, which:

v/ generates high-quality images only
its ArcFace embedding

v/ offers superior ID similarity
compared to existing models
v/ can be extended to different input

modalities, e.g. pose/expression



Related Work

e No existing work to retrieve deepfakes of the query image.

e A combination of face recognition and deepfake detection can be utilized.
o Stage 1. Face retrieval

: Identify images that match the given identity.

Being unrecognized as someone's identity suggests its quality is doubtful.
ex) Variational Prototype Learning for Deep Face Recognition, CVPR 21

o Stage 2. Deepfake detection
: Determine whether the identified face images have been manipulated.



Related Work

e Variational Prototype Learning for Deep Face Recognition, CVPR 2021
: Propose a novel Variational Prototype Learning method which represents each

class as a distribution instead of a point by using the margin-based softmax loss.

(a) Prototype Learning (b) Variational Prototype Learning



Related Work

e No existing work to retrieve deepfakes of the query image.

e A combination of face recognition and deepfake detection can be utilized.
o Stage 1. Face retrieval

: Identify images that match the given identity.

Being unrecognized as someone's identity suggests its quality is doubtful.
ex) Variational Prototype Learning for Deep Face Recognition, CVPR 21
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: Determine whether the identified face images have been manipulated.



Related Work

e Prompt-guided inpainting can modify images while preserving their identities.
« (Stage 2. Deepfake detection) can't handle this issue.

Prompt Source Image  Edited Image

Two menin a
wedding on a
seafront

Two men in jail

Image Credit: Raising the Cost of Malicious Al-Powered Image Editing



Related Work

e No existing work to retrieve deepfakes of the query image.

e A combination of face recognition and forgery detection can be utilized.
o Stage 1. Face retrieval

: Identify images that match the given identity.

Being unrecognized as someone's identity suggests its quality is doubtful.
ex) Variational Prototype Learning for Deep Face Recognition, CVPR 21

o Stage 2. Forgery detection
: Determine whether the identified arbitrary images have been manipulated.

ex) Towards Universal Fake Image Detectors that Generalize Across Generative Models, CVPR 23
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Related Work

Towards Universal Fake Image Detectors that Generalize Across Generative Models, CVPR 23
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e No training of real vs. fake classifiers

: The classification process should happen in a feature space which has not been

trained to separate images from the two classes.
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Related Work

e Towards Universal Fake Image Detectors that Generalize Across Generative Models, CVPR 23
e Results
< Classification accuracy (averaged over real and fake images) >

Detection Variant Generative Adversarial Networks eep Guided LDM Glide DALL-E T()—td]
method . fakes

Pro- Cycle- Big- Style- Gau- Star- 200 200 100 100 50 100 Avg.

GAN GAN GAN GAN GAN GAN steps w/ CFG steps 27 27 10 acc

NN, k = 99.58 94.70 86.95 80.24 96.67 98.84] 80.9 | 68.76 89.56 68.99 89.51 86.44 88.02 87.27 7752 8230

NN, k = 90.58 95.04 87.63 80.55 96.94 98.77)83.05] 70.02 90.37 70.17 90.57 87.84 89.34 88.78 79.29 83.28

Ours NN, k = 99.60 94.32 88.23 80.60 97.00 98.90 §83.85] 70.55 90.89 70.97 91.01 88.42 90.07 89.60 80.19 83.72

NN,k =9 99.54 93.49 88.63 80.75 97.11 98.97§84.5 | 71.06 91.29 72.02 91.29 89.05 90.67 90.08 81.47 84.25

LC 100.0 98.50 94.50 82.00 99.50 97.00§66.60f 70.03 94.19 73.76 94.36 79.07 79.85 78.14 86.78 81.38

o Reproduce official code using a linear classifier
: Real Accuracy = 94%, Fake Accuracy = 42%, Average Accuracy = 68%
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Towards Universal Fake Image Detectors that Generalize Across Generative Models, CVPR 23

Related Work Analysis

e Checked the performance of clip embedding for Face retrieval and Forgery detection.
e Results < t-SNE Visualization >
< Real/Fake > < Selected IDs >
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o Reproduce official code using a linear classifier

: Real Accuracy = 94%, Fake Accuracy = 42%, Average Accuracy = 68% 9



Towards Universal Fake Image Detectors that Generalize Across Generative Models, CVPR 23

Related Work Analysis

e Checked the performance of clip embedding for Face retrieval and Forgery detection.

e We tried applying the model to another dataset (Celeb-DF).

< Real/Fake > < Selected IDs >
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e Real Accuracy = 99%, Fake Accuracy = 1%, Average Accuracy = 11% 1



Towards Universal Fake Image Detectors that Generalize Across Generative Models, CVPR 23

Related Work Analysis

e Show different pattern between 2 datasets.

e Deepfakes Dataset Real/Fake Selected IDs
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Challenges

e Performance of forgery detector highly depends on

facial datasets.

e There is still room for improvement in forgery detection

for both datasets.

— Our goal is to improve facial forgery detection of UniDet

for deepfake retrieval systems
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Towards Universal Fake Image Detectors that Generalize Across Generative Models, CVPR 23
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Roles

e Jumin

o Pre-process datasets and visualize embedding spaces (done)

o Analyze the features of the cropped face and the whole image (~ May 18th)
e Suhyeon

o Reproduce UniDet (done)

o Analyze the given query image features (~ May 18th)
e Integrate cropped face and whole image features with query image features

(~ May 30th)
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Q&A
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Thank you
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