Review

- Variational Prototype Learning for Deep Face Recognition, CVPR 2021
 - : Propose a novel Variational Prototype Learning method which represents each

class as a <u>distribution</u> instead of a <u>point</u> by using the margin-based softmax loss.

Towards Universal Fake Image Detectors that Generalize Across Generative Models

CVPR 2023

Jumin Lee 2024. 04. 29.

Goal

- Fake Image Detection with Generalizability
- Train only on real/fake images associated with GAN
- Achieve high performance on <u>unseen Generative model images</u>

Motivation

• Generative models are spreading quickly,

and there are growing concerns about using generated images to cause harm.

• However, the **existing method**(real-vs-fake classifier) to distinguish between real and fake images **doesn't work with new generative models.**

Motivation

• Training method of existing model^[1]

720K real images, 20 categories from LSUN

Discovery

- Why does this happen?
 - Real-vs-fake classifiers learn to identify fake images by using the **fingerprint**

of the model, rather than learning all the ways an image could be real.

	CycleGAN	GauGAN	LDM	Guided	DALL-E
Real acc.	98.64	99.4	99.61	99.14	99.61
Fake acc.	62.91	59.1	3.05	4.67	4.9
Average	80.77	79.25	51.33	51.9	52.26
Chance performance	50.00	50.00	50.00	50.00	50.00

Proposed Method

- No training of real vs. fake classifiers
 - : The classification process should happen in a feature space which has not been

trained to separate images from the two classes.

Contribution

- Analyze the limitations of existing methods in detecting fake images from unseen breeds of generative models.
- Present two very simple method(nearest neighbor, linear classification) which utilize a feature space that is entirely untrained for real/fake classification.
- Show state-of-the-art generalization performance.

CS588 Paper Presentation 1

Method

Similar to Image Retrieval

• Extract feature and measure distance to find similar.

- **Fake image detection** identify feature that signify whether an image is generated.
- **Image retrieval** identify and match features across a database to retrieve relevant images.

Similar to Image Retrieval

Generalization

- **Fake image detection** should generalize well across generative models that were not trained on it.
- **Image retrieval** should perform across image sets with a different conditions.

Method

- Choice of feature extractor = CLIP:ViT visual encoder
- Exposed to a large number of images.

: Consistent for a wide variety of real/fake images for **generalizability**.

- Capture **low-level details** of an image.
 - : **Differences** between real and fake images arise at low-level details.

CLIP: Learning Transferable Visual Models From Natural Language Supervision, CVPR 2021

CLIP:ViT

- Motivation
 - Language models have made significant

progress with large-scale models.

- Similar advancements are anticipated in vision models with the large models.
- Method
 - Assemble a dataset of 400 million image-text pairs from the Internet.
 - Implement contrastive learning.

CLIP: Learning Transferable Visual Models From Natural Language Supervision, CVPR 2021

CLIP:VIT

- Employs a transformer architecture over
 - patches of the image.
 - An image is split into fixed-size patches,
 - each of them are then linearly embedded, position embeddings are added,
 - and the resulting sequence of vectors is fed to a standard Transformer encoder.

Method #1. Nearest Neighbors

• Using cosine distance as the metric d,

find the nearest neighbors in both the real and fake feature banks.

$$\operatorname{pred}(x) = \begin{cases} 1, & \text{if } \min_i \left(d(\phi_x, \phi_{f_i}) \right) < \min_i \left(d(\phi_x, \phi_{r_i}) \right) & \text{: Fake} \\ 0, & \text{otherwise.} & \text{: Real} \end{cases}$$

Method #2. Linear Classification

- Add a single linear layer and train only this new classification layer.
- Since only training a few hundred parameters, perform <u>similarly to the nearest</u> <u>neighbor.</u>
- Has the advantage of being computationally and memory friendly.

CS588 Paper Presentation 1

Results

Evaluation Metrics

- Average precision (AP)
- Measures the area under the Precision-Recall curve, which plots precision and recall at various threshold levels.
- How sensitively the model detects fake images.

- Classification Accuracy
- Accuracy = # of correct predictions / Total # of prediction
- Indicate the overall error rate.

Generalization Results

• Average precision (AP)

Variant	Generative Adversarial Networks					Guided	LDM			Glide			DALL-E	Total	
	Pro- GAN	Cycle- GAN	Big- GAN	Style- GAN	Gau- GAN	Star- GAN		200 steps	200 w/ CFG	100 steps	100 27	50 27	100 10	2.122.2	mAP
Blur+JPEG (0.1)	100.0	93.47	84.5	99.54	<u>89.49</u>	98.15	73.72	70.62	71.0	70.54	80.65	84.91	82.07	70.59	83.58
Blur+JPEG (0.5)	100.0	96.83	88.24	98.29	98.09	95.44	68.57	66.0	66.68	65.39	73.29	78.02	76.23	65.93	81.52
ViT:CLIP (B+J 0.5)	99.98	93.32	83.63	88.14	92.81	84.62	55.74	52.52	54.51	52.2	56.64	61.13	56.64	62.74	73.44
NN, $k = 1$	100.0	98.14	94.49	86.68	99.26	99.53	79.31	95.84	79.84	95.97	93.98	95.17	96.05	88.51	90.32
NN, $k = 3$	100.0	98.13	<u>94.46</u>	86.67	99.25	99.53	79.26	95.81	79.78	95.94	93.94	95.13	94.60	88.47	90.22
NN, $k = 5$	100.0	98.13	94.46	86.66	99.25	99.53	79.25	95.81	79.78	95.94	93.94	95.13	94.60	88.46	90.22
NN, $k = 9$	100.0	98.13	94.46	86.66	99.25	99.53	79.24	95.81	79.77	95.93	93.93	95.12	94.59	88.45	90.14
LC	100.0	99.46	99.59	97.24	99.98	99.60	87.77	99.14	92.15	99.17	94.74	95.34	94.57	97.15	93.38

- **Existing method** distinguishes with good accuracy for other GAN variants. However, the accuracy <u>drops drastically from unseen generative models.</u>
- **Propose method** show a drastically better <u>generalization</u> performance.

Generalization Results

Classification Accuracy

Variant	Generative Adversarial Networks					Guided	LDM			Glide			DALL-E	Total	
	Pro- GAN	Cycle- GAN	Big- GAN	Style- GAN	Gau- GAN	Star- GAN		200 steps	200 w/ CFG	100 steps	100 27	50 27	100 10		Avg. acc
Blur+JPEG (0.1)	99.99	85.20	70.20	85.7	78.95	91.7	60.07	54.03	54.96	54.14	60.78	63.8	65.66	55.58	69.58
Blur+JPEG (0.5)	100.0	80.77	58.98	69.24	79.25	80.94	51.90	51.33	51.93	51.28	54.43	55.97	54.36	52.26	64.73
ViT:CLIP (B+J 0.5)	98.94	78.80	60.62	60.56	66.82	62.31	50.66	50.74	51.04	50.76	52.15	53.07	52.06	53.18	60.57
NN, $k = 1$	99.58	94.70	86.95	80.24	96.67	98.84	68.76	89.56	68.99	89.51	86.44	88.02	87.27	77.52	82.30
NN, $k = 3$	99.58	95.04	87.63	80.55	96.94	98.77	70.02	90.37	70.17	90.57	87.84	89.34	88.78	79.29	83.28
NN, $k = 5$	99.60	94.32	88.23	80.60	97.00	98.90	70.55	90.89	70.97	91.01	88.42	90.07	89.60	80.19	83.72
NN, $k = 9$	99.54	93.49	88.63	80.75	97.11	98.97	71.06	91.29	72.02	91.29	89.05	90.67	90.08	81.47	84.25
LC	100.0	98.50	94.50	82.00	99.50	97.00	70.03	94.19	73.76	94.36	79.07	79.85	78.14	86.78	81.38

- Results clearly demonstrate the advantage of using the feature space of a frozen,

pre-trained network that is <u>blind to the downstream real/fake classification task</u>.

Ablation Study about Feature Extractor

• Networks trained on CLIP tasks are better able to distinguish between real and fake images, compared to networks trained on imagenet classification,

even when using the same model architecture.

<Ablation on the network architecture and pre-training dataset>

ImageNet:ViT-B/16 ImageNet:ResNet-50

CS588 Paper Presentation 1

Conclusion

Conclusion

- Analyze the <u>limitations</u> of existing methods in generalizability of detecting fake images.
- Performing nearest neighbor / linear probing in informative feature space not trained for real-vs-fake classification results in a significantly better generalization ability of detecting fake images.
- Show state-of-the-art performance.

Limitation

• The question remains about the <u>similarity</u> of images generated with different

kinds of generative models.

