# Paper Presentation 2 Sheikh Shafayat ### Today's paper Published as a conference paper at ICLR 2024 #### FOLLOW-UP DIFFERENTIAL DESCRIPTIONS: LANGUAGE MODELS RESOLVE AMBIGUITIES FOR IMAGE CLASSIFICATION #### Reza Esfandiarpoor & Stephen H. Bach Department of Computer Science Brown University Providence, RI 02906, USA {reza\_esfandiarpoor, stephen\_bach}@brown.edu ### This paper is \*very\* simple - It is about classification - I plan to apply similar idea for my clustering project - I will first give you a 2 minutes summary ### Two minutes summary ### Two minutes summary ### Two minutes summary ### **Example of generated attributes** #### Black-footed Albatross Attribute: size 0: A photo of a tennessee warbler, a small songbird that is only about 4 inches long. 1: A photo of a black-footed albatross, a large seabird with a wingspan of up to 7 feet. Attribute: coloration 0: A photo of a tennessee warbler, a bright yellow bird with olive-green wings and back. 1: A photo of a black-footed albatross, a dark-colored bird with a white head and underparts. Attribute: bill shape 0: A photo of a tennessee warbler, a bird with a small, pointed bill. 1: A photo of a black-footed albatross, a bird with a large, hooked bill. ### In summary - We make initial predictions using CLIP - We take the ambiguous classes - We ask an LLM to write descriptions about those confusing classes ``` For the following objects, generate captions that represent the distinguishing visual differences between the photos of the two objects. Generate as many captions as you can. Object 1: {class name 1} Object 2: {class name 2} ``` Then we prompt again with those description #### More details - We actually do the comparison for k classes - The papers also experiment with all classes #### Results Table 1: Accuracy of FuDD in comparison with baselines. B/32 and L/14\* represent the ViT-B/32 and ViT-L/14@336px vision backbones. $\Delta$ Naive(k) is the improvement of FuDD with k ambiguous classes over the Naive LLM-generated descriptions proposed by Menon & Vondrick (2023). | Description | Cub | | DTD | | EuroSAT | | FGVCAircraft | | Flowers 102 | | Food101 | | |-----------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------------------------------|-------------------------|-------------------------|-------------------------|-----------------------------------------|-------------------------|-------------------------|-------------------------------| | | B/32 | L/14* | | Single Template<br>Template Set<br>Naive LLM | 51.21<br>51.52<br>52.92 | 63.48<br>64.07<br>65.15 | 43.14<br>42.71<br>45.90 | 54.04<br>55.32<br>55.37 | 40.87<br>46.76<br>44.18 | 56.82<br>54.27<br>46.69 | 20.88<br>21.15<br>21.09 | 37.08<br>38.31<br>38.79 | 63.80<br>63.44<br>66.12 | 75.12<br>74.14<br>75.98 | 82.63<br>83.16<br>84.02 | 93.49<br>93.77<br>94.26 | | FuDD $(k=10)$<br>FuDD $(k= C )$ | 53.97<br>54.30 | 65.90<br>66.03 | 45.43<br>44.84 | 57.66<br>57.23 | 45.18<br>45.18 | 60.64<br>60.64 | 21.87<br>22.32 | 38.82<br>39.63 | 67.80<br>67.62 | 78.76<br>79.67 | 84.05<br>84.36 | 94.05<br>94.27 | | $\Delta$ Naive $(k=10)$<br>$\Delta$ Naive $(k= C )$ | ↑1.05<br>↑1.38 | ↑0.75<br>↑0.88 | ↓-0.47<br>↓-1.06 | ↑2.29<br>↑1.86 | ↑1.00<br>↑1.00 | ↑13.95<br>↑13.95 | ↑0.78<br>↑1.23 | ↑0.03<br>↑0.84 | ↑1.68<br>↑1.50 | ↑2.78<br>↑3.69 | ↑0.03<br>↑0.34 | ↓- <mark>0.21</mark><br>↑0.01 | | | ImageNet | | | | | | | | | | | | | | Imag | geNet | Imagel | Net V2 | Oxfo | rd Pets | Place | es365 | Stanfo | rd Cars | Stanfo | rd Dogs | | | Imag<br>B/32 | geNet | Imagel<br>B/32 | Net V2<br>L/14* | Oxfo<br>B/32 | rd Pets | Place<br>B/32 | es365<br>L/14* | Stanfo<br>B/32 | rd Cars | Stanfor<br>B/32 | rd Dogs | | Single Template<br>Template Set<br>Naive LLM | | | | | 20-00-A 10-00-00-00-00-00-00-00-00-00-00-00-00-0 | | 125,000,000,000,000 | | 000000000000000000000000000000000000000 | | U Discoving | | | Template Set | B/32<br>62.04<br>63.37 | L/14*<br>74.85<br>76.54 | B/32<br>54.77<br>55.91 | L/14*<br>68.79<br>70.85 | B/32<br>84.98<br>84.55 | L/14*<br>92.86<br>92.70 | B/32<br>39.10<br>40.91 | L/14*<br>40.70<br>42.54 | B/32<br>60.37<br>60.38 | L/14*<br>78.06<br>79.12 | B/32<br>58.01<br>57.79 | L/14* 73.61 74.01 | #### **Ablation** Table 2: Accuracy of differential and non-differential descriptions for ambiguous classes. B/32 and L/14\* represent the ViT-B/32 and ViT-L/14@336px vision backbones. $\Delta$ is the improvement of differential over non-differential descriptions. | Descriptor | CUB | | DTD | | FGVCAircraft | | Flowers102 | | Food101 | | |------------------------------------|----------------|-----------------------|-----------------------------------------------|----------------|----------------|----------------|----------------------|---------------------------------|-----------------|----------------| | | B/32 | L/14* | | Differential<br>Non-Differential | 53.62<br>52.28 | 65.79<br>64.38 | 45.37<br>42.82 | 56.91<br>56.44 | 22.17<br>22.14 | 39.06<br>36.90 | 67.62<br>65.73 | 79.54<br>77.74 | 84.17<br>83.92 | 94.34<br>94.02 | | $\frac{1000-Differentian}{\Delta}$ | ↑1.35 | †1.42 | †2.55 | ↑0.47 | ↑0.03 | †2.16 | ↑1.89 | ↑1.81 | ↑0.25 | ↑0.32 | | | | | | | | | | Stanford Dogs | | | | | Ox | ford Pets | S | Places | 365 | Stan | ford Cars | s 5 | Stanford | Dogs | | | Ox<br>B/32 | | | Places<br>B/32 | 365<br>L/14* | Stan | ford Cars | | Stanford<br>/32 | Dogs<br>L/14* | | Differential | B/32<br>87.24 | L/1<br>4 93. | 4* 1<br>68 4 | B/32<br>12.45 | L/14*<br>44.26 | B/32<br>60.90 | L/14<br>79.3 | $\frac{4^*}{69} = \frac{B}{60}$ | 0.31 | L/14*<br>75.96 | | Differential<br>Non-Differential | B/32 | L/1<br>4 93.<br>4 93. | $\frac{4^*}{68}$ $\frac{2}{4}$ $\frac{2}{62}$ | B/32 | L/14* | B/32 | L/14<br>79.3<br>78.5 | 4* B 60 55 59 | /32 | L/14* | #### Ablation: Effect of K Figure 3: Impact of differential descriptions for k most ambiguous classes with ViT-L/14@336px. k=1 is accuracy with a single template. Providing differentiating details for the most ambiguous classes accounts for most of FuDD's gains, with diminishing gains for less ambiguous classes. ### **LLM Knowledge Matters** - Open models like LLama-2 doesn't know much about satellite imageries - So their feedback is not very helpful for EuroSAT dataset - But GPT3.5 knows quite a lot - Fine-tuning on GPT3.5 output helps ### **Pros and Cons** ### Pros of the paper - Very simple method - Consistently outperforms other similar methods - Works across models (CLIP, BLIP2) ### Cons of the paper X - Computationally expensive - Not very practical for real-time applications - The accuracy gain is small 2~3% - Is it worth it? ## Thank You # Quiz #### Quiz What happens if you increase k (the number of ambiguous classes to compare) too much? - a. Accuracy increase is marginal - b. Accuracy increase is drastic - c. Accuracy decreases significantly - d. Accuracy drops slightly