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Class Objectives

e Up-to-date matching-based algorithms
e Adversarial attacks

e Combining adversarial attacks with matching-based algorithms
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Matching-based Algorithms

e What is matching-based algorithm?

e Finding correspondence or similarity

between multiple sets of data

e Can be used to estimate 3D geometric

structure of the data




Stereo Matching

e Uses two images taken from slightly different viewpoints

e Goal: Infer disparity or depth maps given the image pair

Left image

Disparity map
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Stereo Matching

e Current methods use CNN to extract features from each image

e |t then constructs a cost volume, from which the final depth is predicted
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Multi-view Stereo

e Multi-view stereo uses more than two images captured multiple viewpoints

e Can potentially provide more accurate and detailed 3D reconstructions

e Goal: Learn correspondence among images to infer depth of objects
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3D Matching (Novel-view Synthesis)

e More current methods use correspondence among multi-view images to model a

continuous 3D representation of a scene

e This allows a more accurate and seamless prediction of the 3D geometry

e Became highly popular with introduction of Neural Radiance Fields (NeRF)
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Mildenhall et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020



Neural Radiance Fields

e NeRF uses an MLP network Fg to represent a 3D scene
e Given the position (x,y,z) and direction (0, ¢) of a 3D point,

e MLP Fg predicts the color RGB and density o
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Mildenhall et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020
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Neural Radiance Fields: Input

e A set of images captured on a scene

Randomly sample points along the rays from camera origin to each pixel of the image
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Mildenhall et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020
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Neural Radiance Fields: Output

e Pass the pos (x,y,z) and dir (0, ¢) of each point to the MLP network Fg

e MLP then predicts color RGB and density o for each point
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Neural Radiance Fields: Volume Rendering

e Since NeRF models a continuous 3D volume, it can render images to an arbitrary view

e Volume rendering: Accumulation of colors and density of multiple points on a ray
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Mildenhall et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020
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NeRF for Novel-View Synthesis

e NeRF shows excellent performance at modeling 3D scene & rendering arbitrary views
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Mildenhall et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020
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Adversarial Attacks
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Adversarial Attacks

e Many deep learning models are known to be vulnerable to adversarial attacks

Video: https://www.youtube.com/watch?v=pc2ssNY98LA&feature=emb_logo&ab_channel=PoloClubofDataScience
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Adversarial Attacks

e Many deep learning models are known to be vulnerable to adversarial attacks

- e KAIST

Video: https://www.youtube.com/watch?v=zQ_uMenoBCk



Adversarial Attacks

Deep Neural Lion
Network (DNN) (p=0.99)
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[Chatfield et al., BMVC ‘14]

18 Slide credit: Binghui Wang: Adversarial Machine Learning — An Introduction
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Adversarial Attacks

e Adversarial example guides classifier to make wrong predictions

DNN
(same as before)
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[Szegedy et al., ICLR ‘14]
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Slide credit: Binghui Wang: Adversarial Machine Learning — An Introduction
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Adversarial Attacks

e Difference between adversarial image and natural image is hardly noticeable

3

Slide credit: Binghui Wang: Adversarial Machine Learning — An Introduction

KAIST



How does Adversarial Attack Work?

e Perturbation maliciously designed to fool machine learning models

e Formulated by maximizing training loss
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57.7% confidence 8.2% confidence 99.3 % confidence
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How does Adversarial Attack Work?

e Adversarial examples are designed to cross the decision boundary of models

e The degree of perturbation on the data should be minimal
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(a) Trained binary (b) Adversarial attack crossing
classifier decision boundary

22 Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018
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Applicability of Adversarial Attacks

e Adversarial examples can exist on possibly any:
e Deep neural network (MLP, CNN, ViT, ...)
e Form of data (image, video, point cloud, mesh, ...)

e Task (classification, localization, generation, ...)
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Adversarial Attack on Matching-based Algorithms

e There also have been adversarial attacks on matching-based algorithm

e NeRFool investigates the adversarial vulnerability of Generalizable NeRFs

NeRFool: Uncovering the Vulnerability of Generalizable Neural
Radiance Fields against Adversarial Perturbations

1

Yonggan Fu' Ye Yuan! Souvik Kundu? Shang Wu'! Shunyao Zhang? Yingyan (Celine) Lin '
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Fu et al., NeRFool: Uncovering the Vulnerability of Generalizable Neural Radiance Fields against Adversarial Perturbations, ICML 2023



Generalizable NeRFs

e Originally, a single NeRF is fitted to a single 3D scene or object

e Generalizable NeRFs generalize a single NeRF model to multiple scenes or objects

e They use a set of “supportimages”to condition the MLP network
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Yu et al., pixeINeRF: Neural Radiance Fields from One or Few Images, CVPR 2021
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NeRFool

e The goal of NeRFool is to fool the target G-NeRF to render disrupted images

e To do so, it crafts “adversarial support images”
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Fu et al., NeRFool: Uncovering the Vulnerability of Generalizable Neural Radiance Fields against Adversarial Perturbations, ICML 2023
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