Applications of Adversarial Attacks on Matching-based Algorithms

CS588 Speaker: Woo Jae Kim

Class Objectives

- Up-to-date matching-based algorithms
- Adversarial attacks
- Combining adversarial attacks with matching-based algorithms

Matching-based Algorithms

Matching-based Algorithms

- What is matching-based algorithm?
- Finding correspondence or similarity between <u>multiple sets of data</u>
- Can be used to estimate <u>3D geometric</u> <u>structure</u> of the data

Stereo Matching

- Uses two images taken from slightly different viewpoints
- Goal: Infer disparity or depth maps given the image pair

Right image

Disparity map

Image: https://www.baeldung.com/cs/disparity-map-stereo-vision

Stereo Matching

- Current methods use CNN to extract features from each image
- It then constructs a cost volume, from which the final depth is predicted

Multi-view Stereo

- Multi-view stereo uses *more than two images* captured multiple viewpoints
- Can potentially provide more accurate and detailed 3D reconstructions
- Goal: Learn correspondence among images to infer depth of objects

KAIS

3D Matching (Novel-view Synthesis)

- More current methods use correspondence among multi-view images to model a <u>continuous 3D representation</u> of a scene
- This allows a more accurate and seamless prediction of the 3D geometry
- Became highly popular with introduction of <u>Neural Radiance Fields (NeRF)</u>

Mildenhall et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020

Neural Radiance Fields

- NeRF uses an MLP network F_{Θ} to represent a 3D scene
- Given the position (x, y, z) and direction (θ, ϕ) of a 3D point,
- MLP F_{Θ} predicts the color *RGB* and density σ

Neural Radiance Fields: Input

- A set of images captured on a scene
- Randomly sample points along the rays from camera origin to each pixel of the image

Mildenhall et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020

Neural Radiance Fields: Output

- Pass the pos (x, y, z) and dir (θ, ϕ) of each point to the MLP network F_{Θ}
- MLP then predicts <u>color RGB</u> and <u>density σ </u> for each point

Neural Radiance Fields: Volume Rendering

- Since NeRF models a continuous 3D volume, it can render images to an arbitrary view
- Volume rendering: Accumulation of colors and density of multiple points on a ray

NeRF for Novel-View Synthesis

• NeRF shows excellent performance at modeling 3D scene & rendering arbitrary views

• Many deep learning models are known to be vulnerable to *adversarial attacks*

Video: https://www.youtube.com/watch?v=pc2ssNY98LA&feature=emb_logo&ab_channel=PoloClubofDataScience

• Many deep learning models are known to be vulnerable to *adversarial attacks*

Video: https://www.youtube.com/watch?v=zQ_uMenoBCk

Slide credit: Binghui Wang: Adversarial Machine Learning — An Introduction

• Adversarial example guides classifier to make wrong predictions

• Difference between adversarial image and natural image is hardly noticeable

Slide credit: Binghui Wang: Adversarial Machine Learning — An Introduction

How does Adversarial Attack Work?

- Perturbation maliciously designed to fool machine learning models
- Formulated by *maximizing training loss*

How does Adversarial Attack Work?

- Adversarial examples are designed to cross the decision boundary of models
- The degree of perturbation on the data should be minimal

Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018

Applicability of Adversarial Attacks

- Adversarial examples can exist on possibly any:
 - Deep neural network (MLP, CNN, ViT, ...)
 - Form of data (image, video, point cloud, mesh, ...)
 - Task (classification, localization, generation, ...)

On the Robustness of Vision Transformers to Adversarial Examples

Kaleel Mahmood Department of Computer Science and Engineering University of Connecticut, CT, 06269, USA kaleel.mahmood@uconn.edu

Rigel Mahmood Department of Computer Science and Engineering University of Connecticut, CT, 06269, USA

Marten Van Dijk CWI, Amsterdam The Netherlands

On the Robustness of ChatGPT: An Adversarial and Out-of-distribution Perspective

Jindong Wang¹, Xixu Hu^{1,2‡}, Wenxin Hou^{3†}, Hao Chen⁴, Runkai Zheng^{1,5‡}, Yidong Wang⁶, Linyi Yang⁷, Wei Ye⁶, Haojun Huang³, Xiubo Geng³, Binxing Jiao³, Yue Zhang⁷, Xing Xie¹

¹Microsoft Research, ²City University of Hong Kong, ³Microsoft STCA, ⁴Carnegie Mellon University, ⁵Chinese University of Hong Kong (Shenzhen), ⁶Peking University, ⁷Westlake University

https://github.com/microsoft/robustlearn

Generating 3D Adversarial Point Clouds

Chong Xiang Shanghai Jiao Tong University Shanghai, China xiangchong97@gmail.com Charles R. Qi Facebook AI Research California, USA charlesq34@gmail.com Bo Li University of Illinois at Urbana-Champaign Illinois, USA lxbosky@gmail.com

Adversarial Attack on Matching-based Algorithms

- There also have been adversarial attacks on matching-based algorithm
- NeRFool investigates the adversarial vulnerability of Generalizable NeRFs

NeRFool: Uncovering the Vulnerability of Generalizable Neural Radiance Fields against Adversarial Perturbations

Yonggan Fu¹ Ye Yuan¹ Souvik Kundu² Shang Wu¹ Shunyao Zhang³ Yingyan (Celine) Lin¹

Generalizable NeRFs

- Originally, a single NeRF is fitted to a single 3D scene or object
- Generalizable NeRFs generalize a single NeRF model to <u>multiple scenes or objects</u>
- They use a set of <u>"support images</u>" to condition the MLP network

Yu et al., pixelNeRF: Neural Radiance Fields from One or Few Images, CVPR 2021

- The goal of NeRFool is to fool the target G-NeRF to render disrupted images
- To do so, it crafts *"adversarial support images"*

NeRFool

Fu et al., NeRFool: Uncovering the Vulnerability of Generalizable Neural Radiance Fields against Adversarial Perturbations, ICML 2023

Q&A

