cs588: Image Search

Sung-Eui Yoon (윤성의)

Course URL: http://sgvr.kaist.ac.kr/~sungeui/IR

About the Instructor

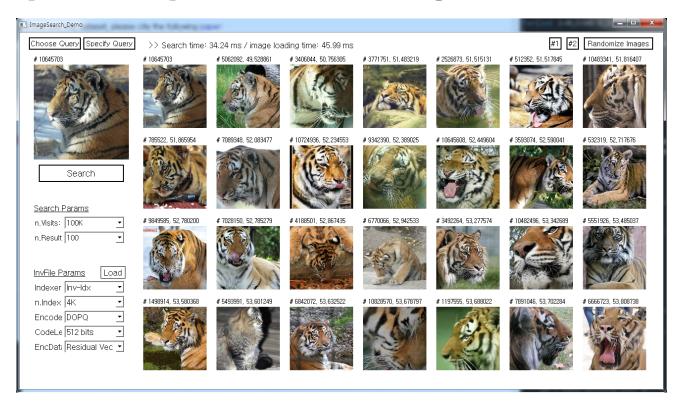
- Notable recognitions
 - Organized tutorial on image search at CVPR
 - Worked with Adobe, Naver, Hancom, etc.
 - Produced a professor on image search (SKKU)
 - Received next-generation scientist award (IT category) at 2019 from S-Oil and Korea Academy of Science
- Related materials
 - Paper and video: <u>http://sgvr.kaist.ac.kr/publication</u>
 - YouTube videos: http://www.youtube.com/user/sglabkaist



Research Theme: Intelligent Ray Tracing, Image Search, Motion Planning

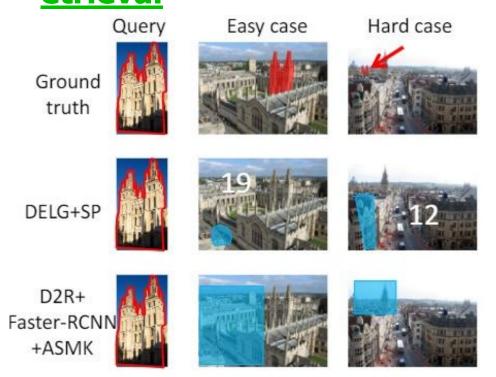
 Designing intelligent and scalable techniques to efficiently handle massive models on commodity hardware or clouds

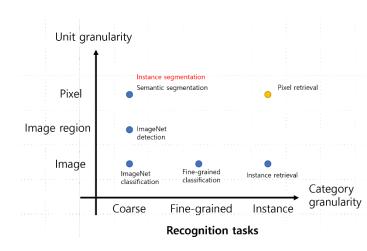
Photo-realistic rendering



Motion planning

Results of Image Search


- Collaborated with Adobe, NAVER, Hancom
 - 11M images
 - Use deep neural nets for image representations
 - Spend only 35 ms for a single CPU thread

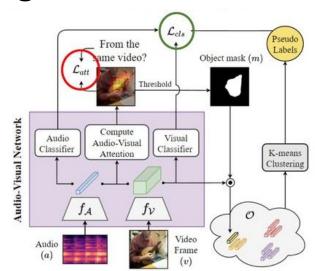


New Image Search Benchmark

- Image retrieval → Pixel retrieval
 - Towards Content-based Pixel Retrieval in Revisited Oxford and Paris, ICCV 23
 - https://sgvr.kaist.ac.kr/~guoyuan/Segment_r etrieval

Other Related Works

Part-based Pseudo Label Refinement for Unsupervised Person Re-identification, CVPR 22



Unlabeled Dataset

n

Optical flow through matching, ECCV 22

Video inpainting through audiovisual self-supervision, ICASSP 22

About the Instructor

- Contact info
 - Email: sungeui@kaist.edu
 - Office: 3432 at CS building (E3-1)
 - Homepage: http://sgvr.kaist.ac.kr/~sungeui

Class Information

- Class time
 - 10:30am ~ 11:45pm on MW
- Office hours
 - Right after the class time
 - You can make arrangements by sending emails

TA

- Sebin Lee (이세빈)
 - Room: E3-1 #3443

- Woo Jae Kim (김우재)
 - Room: E3-1 #3446

 Use KLMS first for questions and discussions, instead of sending emails

About the Course

- We will focus on the following things:
 - Broad understanding on image (and video) search techniques and related methods
 - In-depth knowledge on recent methods
 - Design better technologies as your final project
- Main theme:
 - Think about how matching and searching components can be utilized for various computer vision and other problems including even generation

Image Search or Content-Based Image Retrieval (CBIR)

 Identify similar images given a userspecified image or other types of inputs

Image Search

 Identify similar images given a userspecified image or other types of inputs

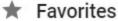
Extract image descriptors (e.g., SIFT or CNNs)

Input

Output

Applications of Matching

- Search
- Image stitching
- Object/scene/location recognitions
- Robot localization and mapping (SLAM)
- Copyright detection
- Optical flow
- Neural radiance field

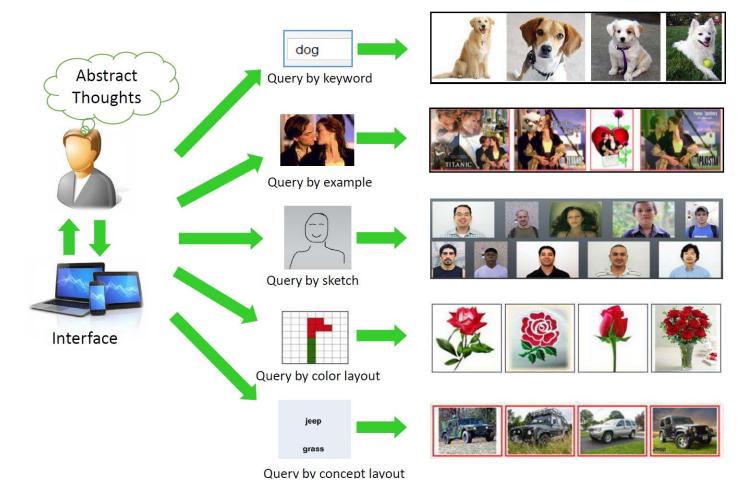

Google Photos and Many Search Functionality

Search "Daehak-ro"

Places

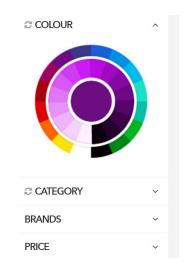
Things

Cross Domain Image Search


Visual similarity across image domains

Shrivastava et al., SIGA

Different Search Scenario


Zhou et al., arxiv

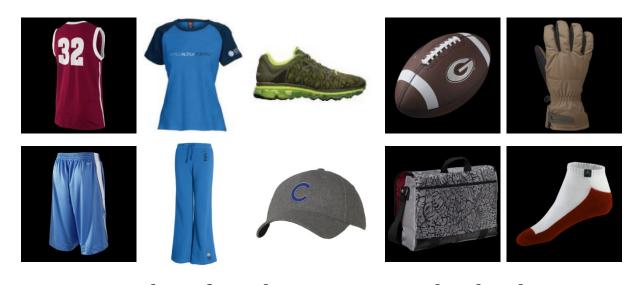
Some Image Search Companies

Based on near duplicate image search

Snap fashion

Some Startups

- 학생 창업
 - 클디, 2011년 창업


클디 팀원들, 왼쪽부터 김효은 연구원, 백승욱 CEO, 이정인 CTO

기술기반 스타트업으로서 좋은 모범 사례를 남기고 싶다

Product Image Recognition

[X. Shen et al., ECCV 2012]

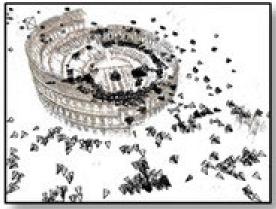
Examples of product images in the database

Examples of query images taken by mobile phones

Landmark or Location Detection

query

City-scale image DB


3D Reconstruction

 Conducted by feature matching among many images

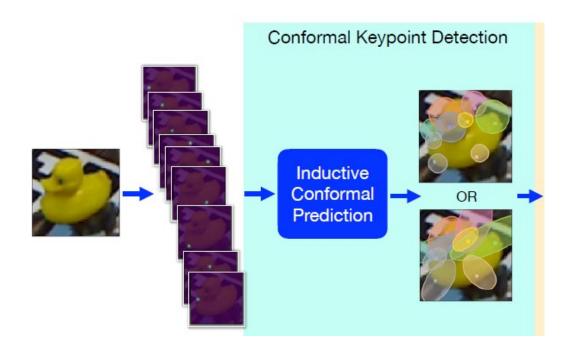
Simultaneous localization and mapping (SLAM)

Mapping

 Continuously expanding and optimizing a consistent map while exploring the environment

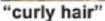
Localization

Localization within the map


Jing Dong "GTSAM 4.0
Tutorial" License CC BYNC-SA 3.0

Object Pose Estimation with Statistical Guarantees, CVPR 23

 Object Pose Estimation with Statistical Guarantees: Conformal Keypoint Detection and Geometric Uncertainty Propagation



Example: Transfiguring Portraits [SIG. 16]

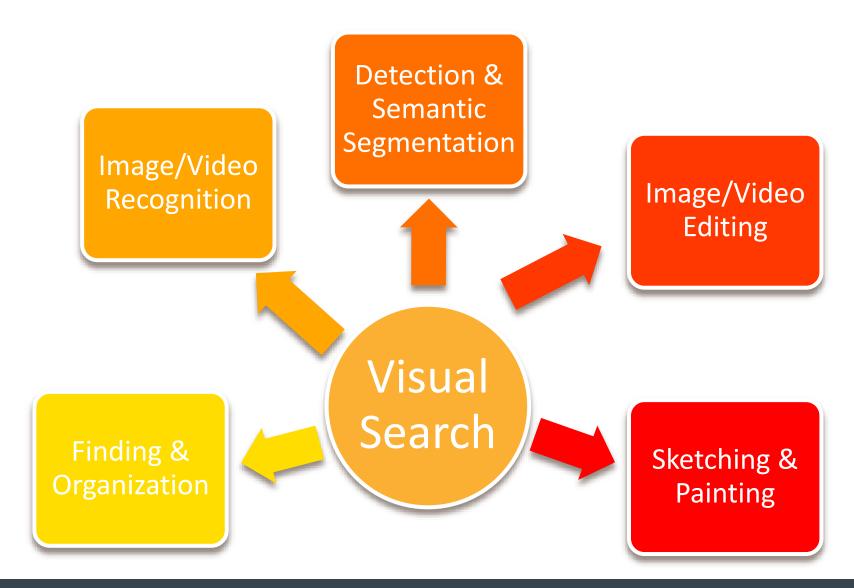
"india"

"1930"

Time-Lapse Photography and Edit Transfer [Shen et al.]

Figure 1: Our regional foremost matching for Internet images estimates accurate regional correspondence and enables several applications.

Person Search or Re-ID



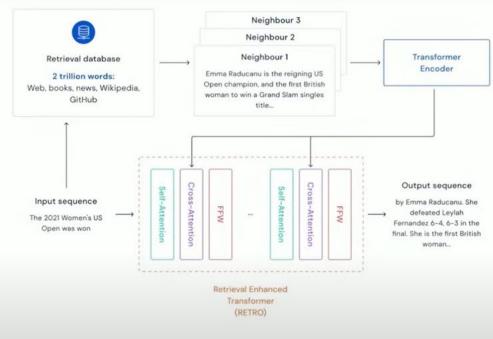
quer positive y images (2)

negative images (98)

Possible Application Domains

Retrieval-Augmented Generation

Current Efforts to Address Problems: Retrieval-Augmented LMs

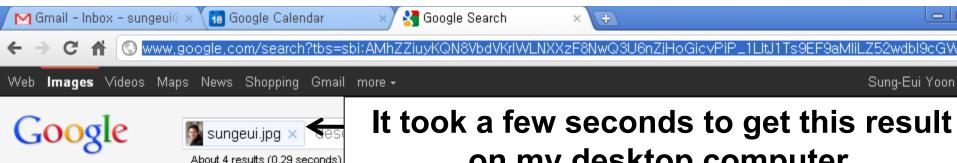

- Retrieval-Augmented Language Models
 - Use input sequence to search external document collections or knowledge graphs
 - Fuse results with the query to generate the answer
 - Bing probably implements this

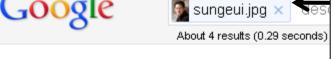
Benefits

- Network can be 10x smaller (RETRO)
- External documents can be updated without retraining
- Reduces hallucination
- Answer can be attributed to source documents

Issues

- Implicit world knowledge (in LLM) can interfere with knowledge from retrieved documents to cause hallucinations
- Evaluations (Bing, NeevaAI, perplexity.ai, YouChat) show 48.5% of generated sentences are not fully supported by retrieved documents and 25.5% of cited documents are irrelevant (Liu, et al. 2023)
- Vulnerable to poisoning of external knowledge sources




RETRO: Borgeaud, et al. 2021; 2022

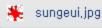
on my desktop computer.

Image size: 200×272

Find other sizes of this image: All sizes - Small

Pages that include matching images

Sungeui Yoon (성의,윤성의) Q sglab.kaist.ac.kr/~sungeui/ - Cached Sung-Eui Yoon (윤 성의) Assistant professor. Scalable Graphics/Geometric Algorithm Lab. Dept. of Computer Science · KAIST ...

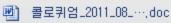


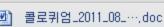
의 웹사이언스 공학 WebST -أدرس ابن صفحه 웹사이언스 공학 WebST - [Translate this page] webst.kaist.ac.kr/content.php?db=professor - Cached 이름Cha, Meeyoung (차미영) 조교수; 연구분야Social Computing, Data-Driven Social Science; 학위PhD, KAIST, 2008; 전화번호+82-42-350-2922; 이 메일meeyoungcha

 100×100

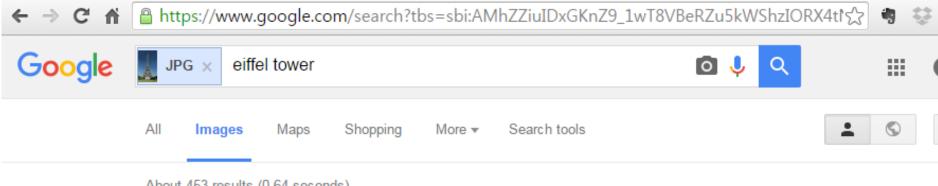
2010.09.13 - KGC 2011 🔍 - [Translate this page] www.kgconf.com/kor/html/conference_c_view.html?cate3... - Cached Kristian Segerstrale Playfish, 소셜게임의 미래 현재 소셜게임의 현주소와 빠르게 성 장하는 소설게임의 미래를 예리한 견식으로 소개 ...

Everything


Images


Videos

News


More.

Shopping

About 453 results (0.64 seconds)

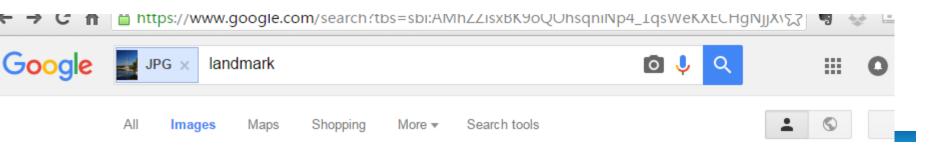


Image size: 240 × 400

Find other sizes of this image: All sizes - Small - Medium - Large

Best guess for this image: eiffel tower


About 7 results (0.61 seconds)

Image size: 433 × 624

Find other sizes of this image: All sizes - Medium

Best guess for this image: landmark

Some of Topic Lists

- Feature detectors
- Descriptors
- Nearest neighbor search
- Bag-of-Word
- Recognition
- Convolutional neural network
- Feature aggregation

- Hashing techniques
- Large-scale retrieval indexing techniques
- Video related techniques
- Various applications
- Image generation for cross domain
- Attention

Prerequisites

- Basic knowledge of linear algebra and data structures
- Basic knowledge on machine learning (e.g., regression) and deep learning
 - Assume you to know deep learning and modify it for your application
- Some prior experiences on programming
- If you are not sure, please consult the instructor at the end of the course

Course Overview

- Half of lectures and other half of student presentations
 - This is a research-oriented course
- What you will do:
 - Choose papers and present them
 - Propose ideas that can improve the state-ofthe-art techniques
 - Quiz, mid-term, final-term exams, and
 - Have fun!

Course Overview

- Grade policy
 - Quiz, assignment, and exams: 30%
 - Class attendance and presentations: 30%
 - Final project: 40%
 - Class presentation and projects are the most important activities in this class
- Instructor and students will evaluate presentations and projects
 - Instructor: 50% weights
 - Students: 50% weights

Presentations

- Choose and present papers that are related to the course theme
 - Two talks for each student
 - Present a paper in each talk

Final Project

- Propose ideas to address problems identified from your presentation papers
 - Show benefits of your ideas and how your ideas can improve the state-of-the-art techniques in a logical manner
 - Implementation of your ideas is not required, but is recommended
- Team project is allowed
 - Role of each student should be very clear

Course Awards

- Best speaker and best project awards
 - Lunch or dinner for awardees with me and TAs
- A high grade will be given to members of the best project

Programming HWs and Exams

- Two programming assignments
 - Implement basic image search components
- Late policy
 - No score for late submissions
 - Submit your work before the deadline!
- Two exams
 - Mid-term exam covers class materials
 - Final-term exam covers presentation materials of students

Question HWs for Every Class

- Come up with one question in the class and submit at the end of the class
 - 1 for typical questions (that were answered in the class)
 - 2 for questions with thoughts or that surprised me

Submit questions three times before the mid-term exam

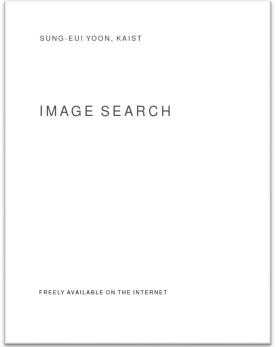
Homework for Every Week

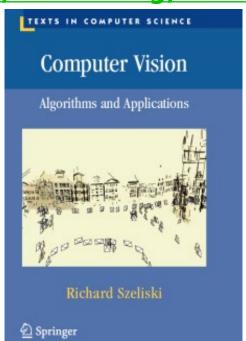
- Go over recent papers on image search
 - Those should be high quality and recent ones
 - Find two papers, and submit your summary before every beginning of the Mon. class
 - Online submission is possible
- Think about possible team members
- Too late if you think them later...

Honor Code

- Collaboration encouraged, but assignments must be your own work
- Cite any other's work if you use their code

- Classroom etiquette: help you and your peer to focus on the class
 - Turn off cell phones
 - Arrive to the class on time
 - Avoid private conversations
 - Be attentive in class


Class Attendance Rule


- Late two times → count as one absence
- Every two absences → lower your grade (e.g., A- → B+)
- To check attendance, I'll call your names
- If you are in situations where you should be late, notify earlier

Resource

- My ongoing draft on image search
 - pdf file is available at the webpage
- Reference
 - Computer vision: algorithms and applications
 - Its file is available (http://szeliski.org/Book/)

Other Resources

- Technical papers
 - CVPR, ICCV, ICLR, NeurIPS, ICMR, ACM MM, SIGGRAPH, etc.
 - Youtube (technical talks)
 - Computer vision resource (<u>http://www.cvpapers.com/</u>)
 - Multimedia information retrieval (<u>http://www.mirsociety.org/mweb/</u>)
- Course homepages
- Google or Google scholar

Schedule

- Please refer the course homepage:
 - http://sgvr.kaist.ac.kr/~sungeui/IR

Official Language in Class

English

- I'll give lectures in English
- I may explain again in Korean if materials are unclear to you
- You are no required to use English, but are recommended
- To non-native Korean speakers
 - Many Korean students prefer to use Korean for deeper discussions
 - In these cases, we will use Korean, but I will summarize main points in English

My Wish for You

- Follow up lecture materials and do various class activities/HWs
- Hopefully, they will:
 - Lead to your next publication, or
 - Lead to your next start-up

About You

- Name
- Your (non hanmail.net) email address
- What is your major?
- Previous experience on image search and computer vision
- Credit/audit
- Online submission: https://forms.gle/gRcHfvfdP9DnQBjj8

Next Time

Feature detectors

